770 research outputs found

    Topologically confined states at corrugations of gated bilayer graphene

    Get PDF
    We investigate the electronic and transport properties of gated bilayer graphene with one corrugated layer, which results in a stacking AB/BA boundary. When a gate voltage is applied to one layer, topologically protected gap states appear at the corrugation, which reveal as robust transport channels along the stacking boundary. With increasing size of the corrugation, more localized, quantum-well-like states emerge. These finite-size states are also conductive along the fold, but in contrast to the stacking boundary states, which are gapless, they present a gap. We have also studied periodic corrugations in bilayer graphene; our findings show that such corrugations between AB- and BA-stacked regions behave as conducting channels that can be easily identified by their shape

    Interface States in Carbon Nanotube Junctions: Rolling up graphene

    Get PDF
    We study the origin of interface states in carbon nanotube intramolecular junctions between achiral tubes. By applying the Born-von Karman boundary condition to an interface between armchair- and zigzag-terminated graphene layers, we are able to explain their number and energies. We show that these interface states, costumarily attributed to the presence of topological defects, are actually related to zigzag edge states, as those of graphene zigzag nanoribbons. Spatial localization of interface states is seen to vary greatly, and may extend appreciably into either side of the junction. Our results give an alternative explanation to the unusual decay length measured for interface states of semiconductor nanotube junctions, and could be further tested by local probe spectroscopies

    Controlling the layer localization of gapless states in bilayer graphene with a gate voltage

    Get PDF
    Experiments in gated bilayer graphene with stacking domain walls present topological gapless states protected by no-valley mixing. Here we research these states under gate voltages using atomistic models, which allow us to elucidate their origin. We find that the gate potential controls the layer localization of the two states, which switches non-trivially between layers depending on the applied gate voltage magnitude. We also show how these bilayer gapless states arise from bands of single-layer graphene by analyzing the formation of carbon bonds between layers. Based on this analysis we provide a model Hamiltonian with analytical solutions, which explains the layer localization as a function of the ratio between the applied potential and interlayer hopping. Our results open a route for the manipulation of gapless states in electronic devices, analogous to the proposed writing and reading memories in topological insulators

    Resistivity phase diagram of cuprates revisited

    Full text link
    The phase diagram of the cuprate superconductors has posed a formidable scientific challenge for more than three decades. This challenge is perhaps best exemplified by the need to understand the normal-state charge transport as the system evolves from Mott insulator to Fermi-liquid metal with doping. Here we report a detailed analysis of the temperature (T) and doping (p) dependence of the planar resistivity of simple-tetragonal HgBa2_2CuO4+δ_{4+\delta} (Hg1201), the single-CuO2_2-layer cuprate with the highest optimal TcT_c. The data allow us to test a recently proposed phenomenological model for the cuprate phase diagram that combines a universal transport scattering rate with spatially inhomogeneous (de)localization of the Mott-localized hole. We find that the model provides an excellent description of the data. We then extend this analysis to prior transport results for several other cuprates, including the Hall number in the overdoped part of the phase diagram, and find little compound-to-compound variation in (de)localization gap scale. The results point to a robust, universal structural origin of the inherent gap inhomogeneity that is unrelated to doping-related disorder. They are inconsistent with the notion that much of the phase diagram is controlled by a quantum critical point, and instead indicate that the unusual electronic properties exhibited by the cuprates are fundamentally related to strong nonlinearities associated with subtle nanoscale inhomogeneity.Comment: 22 pages, 5 figure

    Construction of a Complete Set of States in Relativistic Scattering Theory

    Get PDF
    The space of physical states in relativistic scattering theory is constructed, using a rigorous version of the Dirac formalism, where the Hilbert space structure is extended to a Gel'fand triple. This extension enables the construction of ``a complete set of states'', the basic concept of the original Dirac formalism, also in the cases of unbounded operators and continuous spectra. We construct explicitly the Gel'fand triple and a complete set of ``plane waves'' -- momentum eigenstates -- using the group of space-time symmetries. This construction is used (in a separate article) to prove a generalization of the Coleman-Mandula theorem to higher dimension.Comment: 30 pages, Late
    corecore