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We investigate the electronic and transport properties of gated bilayer graphene with one corrugated layer,
which results in a stacking AB/BA boundary. When a gate voltage is applied to one layer, topologically protected
gap states appear at the corrugation, which reveal as robust transport channels along the stacking boundary.
With increasing size of the corrugation, more localized, quantum-well-like states emerge. These finite-size states
are likewise conductive along the fold, but in contrast to the stacking boundary states, which are gapless, they
present a gap. Additionally, we have studied periodic corrugations in bilayer graphene; our findings show that
such corrugations between AB- and BA-stacked regions also behave as conducting channels in the direction of

the folds. These topological states could be easily identified due to the spatial shape of the corrugations.
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I. INTRODUCTION

The distinctive electronic properties of monolayer graphene
can be modified by stacking more graphene layers on top
[1,2]. For instance, Bernal (also called AB-stacked) bilayer
graphene (BLG) shows a parabolic dispersion relation at low
energies, and a gap can be opened by an external electric
field applied perpendicular to the system [3,4]. Although the
experimentally obtained energy gaps are moderate, such a
gap opening is impossible in monolayer graphene or bilayer
graphene with other stackings, so it is of great importance for
making electronic devices based on graphene. Interestingly,
experimental results indicate that the transport gap in Bernal-
stacked BLG is smaller than the optical one [5-7]. There
is a substantial dispersion of the gap values, depending on
whether the sample is suspended or not, and in the latter
case, the type of substrate employed. In fact, even for zero
bias some samples showed a transport gap [8—11], while
others presented a metallic behavior [12—-14]. Many-body
effects have been invoked to explain such differences [8,15];
however, another plausible explanation has arisen recently,
namely, the existence of stacking boundaries in bilayer
graphene.

In monolayer graphene, domain walls can be atomically
sharp, consisting on grain boundaries made of topological de-
fects with associated edge states [16—18]. These grain bound-
aries have been extensively studied in multilayer graphene
[19,20] and even in carbon nanotubes [21]. In BLG, boundaries
composed of topological defects also occur [22-24], but
domain walls can as well consist of a stacking dislocation
between AB and BA regions (equivalent to the so-called
AB-AC boundaries). Such structures have been experimentally
identified by various techniques, evidencing their ubiquity in
bilayer graphene [22,25-27]. In contrast to boundaries made
of topological defects, stacking boundaries are not atomically
sharp. They can appear as strained regions, which produce a
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gradual transition between AB and BA-stacked graphene. The
connection between the two stacking regions can take place
in different forms: not only by tensile or shear strain, but also
by corrugations of one of the layers [28-31]. The reversal of
stackings has a significant influence on the electronic transport,
it lowers the conductance between the AB and BA regions and
leads to the appearance of the topologically protected states
localized in the transition region.

Indeed, gapped bilayer graphene has been recently pre-
dicted to be a quantum valley Hall insulator [30,32-34]. It
can have chiral edge states associated to the two valleys
propagating in opposite directions, which are topologically
protected if valley mixing is precluded. These robust states
were predicted to appear in electric-field domain walls [33,35—
37], where two regions differ in the sign of the applied
voltage; however, these systems are not easy to implement
experimentally. In fact, they are equivalent to an AB/BA
stacking boundary, as those produced in strained bilayer
graphene with a uniform applied voltage, which also show
these robust gapless states [29-31,38]. Stacking boundaries
have been experimentally observed [22,25,31] and there is
recent evidence of the existence of topologically protected
states in them [27].

Ripples or corrugations in single-layer graphene were
theoretically predicted to appear as a consequence of thermal
fluctuations [39], and have been observed with transmission
electron microscopy [40,41]. These ripples can lead to interest-
ing electronic [42—44], magnetic [45], and chemical properties
[46], mostly due to the associated charge inhomogeneity and
the changes in hybridization. In fact, folding graphene has
been put forward as a way to modify its properties [47-49];
also, folded ribbons have been proposed as graphene-based
electronic connectors between edges or graphene layers [50].
All these schemes are pointing to a novel path to tune the
characteristics of graphene-based systems, giving rise to the
so-called “origami” graphene [47,48,51].

©2015 American Physical Society
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FIG. 1. (Color online) Top and side view of bilayer graphene with
an AB/BA stacking boundary due to a corrugation of the upper layer.
The stacking change from AB to BA is clearly visible in the top view.
The side view below shows the geometry chosen for the corrugation
or fold, namely, half a nanotube. Ny and Ny are the lengths given in
the number of unit cells of the bottom and top layer at the fold.

Folds, corrugations, and wrinkles can also appear on top
of multilayer graphene [40,52]. This type of extended defect
may lead to a stacking boundary between the two sides of the
fold. Contrary to boundaries produced by shear and tensile
strains, the transport properties of corrugated bilayer graphene
with a stacking boundary have not been yet investigated so
thoroughly as in the strained bilayer.

In this paper, we consider stacking boundaries in bilayer
graphene produced by a fold or corrugation of the top layer.
Such defect can be modeled as half a nanotube protruding from
the plane of the upper layer (see Fig. 1), seamlessly joined to
the upper semi-infinite graphene planes.

In order to elucidate its electronic and transport properties,
we first study the one-dimensional (1D) case, i.e., a fold in
a metallic armchair bilayer nanoribbon. Then, we describe
AB/BA stacking boundaries in the two-dimensional (2D) case,
namely, a corrugation in bilayer graphene. Interestingly, we
observe a drop of the conductance through the corrugation
in the ungated system. We attribute this conductance gap to
the symmetry under the simultaneous exchange of layers and
sublattices. By applying a gate voltage to the bottom layer,
an energy gap opens and a series of localized states appear
in the gap. These states are mostly localized around the fold,
although they extend appreciably into the leads, decaying with
an oscillatory behavior. In many cases, the absolute maximum
of the local density of states (LDOS) takes place outside
the corrugation. We distinguish between valley-polarized
topological states, originating from the stacking change, and
eigenstates due to the finite size of the corrugation. We find
that the states localized at the corrugation do not contribute
to the conductance across the boundary, but constitute perfect
conductance channels along this fold, in agreement with recent
experimental measurements [27].

II. GEOMETRY AND MODEL

A. Geometry

In order to fix the notation, we refer to AB stacking when the
A site from the bottom graphene layer, Al, lies exactly below
the B2 site of the top layer. Likewise, BA stacking corresponds
to the B1 site lying below the A2 (see Fig. 1). The connection
between AB- and BA-stacked regions can be achieved by a
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planar deformation of the lattice [29-31,38]. Here, we consider
that the stacking boundary is due to a corrugated region, as it
is shown in Fig. 1. The central part connecting the two perfect
AB- and BA-stacked regions consists of two graphene layers,
one of them longer, creating a fold. Because of the graphene
lattice symmetry, this kind of stacking boundary can be created
in a simple way by connecting layers in AB and BA systems
at a zigzag line. Thus the fold can be easily modeled as a
portion of an armchair nanotube; the bottom layer below the
fold is a piece of flat zigzag ribbon seamlessly connected to
the bottom layer of the leads. If we assume that the bilayer is
situated on a substrate, the most natural configuration would
have a flat bottom layer. The sizes of the bottom and top layers
in the stacking boundary (the central part), Ng and N, are
given in terms of the translational unit cell in the x direction.
For a given Ny value, we choose a larger Ny length, which
allows for the change of stacking. As mentioned above, this
extra length should naturally accommodate as a fold.

B. Model and method

We use a one-orbital tight-binding (TB) Hamiltonian to
describe the system. We assume uncoupled layers in the fold.
Only the nearest-neighbor hopping parameter yy = —2.66 eV
is considered, and we set the on-site energy €y = 0. The bilayer
leads with Bernal stacking are described by H; x = H| +
H, + Hj,, where H, and H, are the single-layer Hamiltonians
corresponding to the bottom and top layer, and the interlayer
Hamiltonian Hj, connects only those atoms that are on top
of each other. The interlayer hopping parameter is taken as
y1 = 0.1yp. We consider that the gate voltage V is applied only
to the bottom layer, as it would be in a reasonable experimental
setup, i.e., a backgate voltage applied to the flat layer lying on
the substrate.

Since the system with a single corrugation has no translation
symmetry in the x direction (perpendicular to the fold, see
Fig. 1), we compute the LDOS and the conductance using the
Green function matching method. The total Hamiltonian of the
system can be written as [21,53,54]

H=H,+Hr+ Hc+ Vic+ Vge, (D

where H; and Hy are the Hamiltonians of the left (L) and right
(R) leads, respectively. H¢ is the Hamiltonian of the conductor
in the central part of the system; in our case, it is the region of
the corrugation: the fold composed by half a nanotube plus a
flat piece of graphene below. V¢ and Vg are the connections
of the central part to the left and right leads, respectively.
The Green function of the central C part is a function of the
energy E:

Gc(E)=(E —Hc— X, — %), 2)

where ¥; = Vicgr VZC and Xz = VchRV,iC are the self-
energies of the leads with g, r being the Green functions of
the leads.

We calculate the conductance G using the Landauer-
Biittiker formalism,

2¢2 2¢?
G(E) = %T(E) = %Tr[FLchRQEJ, 3
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where T'(E) is the transmission function from the left lead
to the right one and I'y g = i[2Z g — EZ r] describes the
couplings between the conductor and the L, R leads.

To study the spatial distribution of the states and their
energy dependence, we draw on the complex band structure
of the semi-infinite bilayer graphene leads [55-57], where the
complex values of the k wave vectors can be related to the
decay lengths of such states. It is a tool successfully used for
the analysis of the decay lengths of localized states in bulk
systems [58—60], linear periodic molecules [61], as well as in
graphene [62]; recently, it has also been applied to topological
insulators [63,64]. Here, we additionally employ it to explain
the oscillations of the corrugation-confined states.

III. CORRUGATED BILAYER GRAPHENE NANORIBBONS

From both, the computational and the conceptual view-
point, it is easier to address in the first place the properties
of the 1D system, that is, a bilayer graphene nanoribbon
with a wrinkle or corrugation in the top layer. Such ribbon
can be considered as a strip of 2D bilayer graphene with a
corrugation. Since we chose the zigzag direction to be parallel
to the corrugation, this implies that the finite-size ribbon cut
perpendicularly to this fold should be of the armchair type,
as shown in Fig. 1. As we are interested in the transport
properties, we select the widths so that the bilayer nanoribbon
leads are metallic at zero gate voltage. The width W of the
ribbon is given in terms of the translational unit cell in the y
direction. The ribbons constituting the bilayer are assumed to
have minimal armchair edges and a perfect vertical stacking,
as the one depicted in Fig. 1. This is the so-called « stacking
in the literature [44,65,66].

A. Conductance drop around E at zero bias

In Fig. 2, we show the results for a bilayer ribbon of
width W =4 with a fold in the absence of gate voltage.
We consider two different corrugations, Ng = 6 and Ny = 10
in panel (a) and Ny = 14 and Ny = 23 in panel (b). In the
energy range |E| < y;, we observe a conductance drop, more
dramatic in the case of the smaller corrugation. In fact, the
maximum value of the conductance and the number of maxima
in|E| < y; increases with the difference between the fold layer
lengths |N7 — Np|. We can correlate the smooth maxima in
the conductance in the energy region with similar features in
the LDOS; notice that for the longer corrugation [Fig. 2(b)]
there are also antiresonances in the conductance related to
sharper LDOS peaks.

The conductance drop appears although both leads as well
as the central part are metallic. To understand this, we should
consider the spatial distribution of the scattering states, i.e.,
those in the left and right leads. Obviously, both leads, bilayer
nanoribbons with AB and BA stacking, have exactly the same
band structure, shown in Fig. 2(c). However, recall that their
spatial distribution in the energy range |E| < y; is in the
uncoupled nodes, these being B1 and A2 sites in the AB
stacking and Al and B2 sites in the BA case [1,67]. We
indicate this spatial distribution with open circles in the band
structure [Fig. 2(c)]. The localization in opposite sublattices is
the reason behind the conductance drop. Indeed, the longer the
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FIG. 2. (Color online) Conductance (black line) and LDOS (blue
line) of two bilayer ribbons of W = 4 and two different fold lengths:
(a) Ng =6and Ny = 10 and (b) Nz = 14 and Ny = 23. The red
line shows the conductance of the infinite bilayer ribbons acting as
leads. (c) shows the band structure close to the Fermi level of a
bilayer ribbon with Bernal stacking. Open circles indicate that the
corresponding states are localized on disconnected sublattices, i.e.,
B1 and A2 sites for AB stacking and A1 and B2 sites in the BA case.

corrugation length, the larger the conductance in this energy
region, as discussed above. This points to a symmetry related
to the simultaneous exchange of sublattices and layers, broken
in the presence of a fold.

We have calculated an ideal abrupt AB/BA boundary,
without any extra atoms for the fold (Ny = 0 and Ny = 0),
justby connecting directly an AB and a BA bilayer nanoribbon.
If the hoppings across the boundary are kept equal, then
the conductance gap is perfect, due to the existence of the
aforementioned symmetry: such an idealized boundary is
invariant under an exchange of sublattices and layer position.
If the hoppings at the boundary are modified, the symmetry is
broken and a small nonzero conductance is observed in the gap.
Likewise, adding more atoms in a folded layer or changing the
hoppings in a strained planar boundary makes the conductance
increase due to the larger symmetry breaking.

B. Gap-localized states in biased folded ribbons

We consider a gate voltage V uniformly applied to the entire
bottom layer, i.e., to both leads and the central flat part lying
below the fold (Fig. 3). With respect to the leads, it is well
known that the voltage opens a gap and changes the shape of
the bands to a “mexican hat”-type dispersion [3,4]. Figure 3(c)
shows the band structure of the bilayer leads with V = 0.3 V,
with a gap in the energy range 0.05 < E < 0.25 eV. For
small & values, the valence and conduction band states are
still localized on uncoupled sites (indicated in the figure with
open circles), similarly to the V = 0 case. However, due to the
“mexican hat” dispersion, there are two channels available at
low energies, and the second one is extended to the coupled
sublattices as well, indicated by filled circles in Fig. 3(c).
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FIG. 3. (Color online) (a) LDOS and (b) conductance of a bilayer
corrugated ribbon witha V = 0.3 V gate voltage applied to the bottom
layer. The width of the ribbon is W = 4 and the folded region lengths
are Nz = 6 and Ny = 10. The red line in (b) shows the conductance
of the infinite bilayer leads with the same bias. (c) Band structure
of the infinite bilayer ribbons that constitute the leads. Open circles
indicate that the corresponding states are localized on disconnected
sublattices, whereas filled circles indicate states with weight in any
sublattice.

Figures 3(a) and 3(b) show the LDOS and conductance
of a biased (V = 0.3 V) bilayer ribbon of width W = 4 and
corrugation with Ny = 6 and Ny = 10. The LDOS is summed
over all the nodes of the central part that constitutes the
corrugation. We observe a series of LDOS peaks; some of
them appear in the nonzero conductance region and give rise
to antiresonant conductance drops, whereas in the conductance
gap ranging from 0.05 to 0.25 eV, we find two peaks at
energies £y = 0.081 eV and E; = 0.2 eV. The number of
localized states in the gap is equal to two only for small Ny
and N7. These gap peaks correspond to the quantization of the
topological boundary states, which appear in the 2D corrugated
bilayer graphene. Increasing the length of the fold leads to the
appearance of more localized states. The origin and properties
of the localized states can be analyzed more easily resorting
to the 2D case (see Sec. IV).

C. Spatial distribution of the localized states

The two states appearing in the gap that we described in the
previous section are produced by the change of stacking across
the boundary and should be localized therein. To corroborate
this, we analyze their spatial distribution. We focus on one
of the localized states, that with £ = 0.081 eV found in the
corrugated W = 4 ribbon with a folded region of Np = 6 and
Ny = 10. Figure 4(a) shows the LDOS distribution in the fold
and in the adjacent regions of the leads; the radii of the circles
are proportional to the LDOS. The color indicates the layer
where the LDOS is evaluated (bottom - red, top - blue). In
order to elucidate the distribution in layers and sublattices, we
present in Fig. 4(b) the LDOS at the bottom (red dots) and top
(blue dots) layers, and in Figs. 4(c) and 4(d), we show how the
state is distributed in the A and B sublattices, respectively.
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FIG. 4. (Color online) Spatial distribution of the localized state
with energy E; = 0.081 eV found in the corrugated bilayer ribbon
of width W =4 and corrugation given by Ng = 6 and Ny = 10.
(a) Atom-resolved LDOS; the circles plotted on each node have
radii proportional to the corresponding LDOS values. Red and blue
colors indicate that the node belongs to the bottom and top layers,
respectively. (b) Unit-cell averaged LDOS at the bottom (red) and
the top layer (blue); the zero labels mark the limits of the stacking
boundary. (c) and (d) Unit-cell-averaged LDOS at both layers (red -
bottom; blue - top), plotted separately for (c) A and (d) B sublattices;
in these two latter panels, open circles indicate that the LDOS is
located at unconnected nodes.

Being a stacking boundary state, it is mostly localized at the
central part that constitutes the corrugation. We find that the
maximum of the LDOS is not always located in the corrugation
region, but instead, it may have its maximum value in the
adjacent cells to the stacking boundary, extending appreciably
into the leads. Recall that for this energy range, bulk lead states
are located in the uncoupled sublattices of the bilayer, which
are reversed in AB and BA stacking. We verify that indeed,
this localized state is also mostly located in the uncoupled
sublattices far from the fold. As they are reversed at opposite
sides of the boundary, they must exchange from one to the
other in the corrugation region. Such lattice swapping is most
evident in Figs. 4(c) and 4(d).

The wave function of the localized state decays moving
away from the corrugation, but with an oscillatory behavior.
This oscillation, visible in the LDOS separated by layers,
is even clearer when plotted for different sublattices. The
oscillations in the top and bottom layers of the leads are in
antiphase, but obviously with the same oscillation period and
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decay constant. These can be obtained from the complex band
structure of the leads [55]. The idea is to allow the wave
vectors k to have complex values. These analytic extensions
stem from the extrema of the real band structure and the
corresponding wave vectors describe the decay and oscillations
of the interface or boundary states lying in the energy gap.
It can be considered as solving the Hamiltonian eigenvalue
problem for a fixed energy inside the gap, so the solutions
yield the complex wave vectors. In fact, they can be obtained
more easily from the transfer matrix formalism [56,57].

For the state shown in Fig. 4, we can directly extract from
the LDOS behavior the spatial frequency of the oscillations,
o = 0.044 and the decay constant « = 0.125, assuming that
the LDOS o cos?(wx) e~**. From the complex band struc-
ture, we get w = Re(k)/m = 0.044 and ¢ = 2Im(k) = 0.118,
which compare rather well to the fitted values. The unit length
in the previous quantities is the BLG nanoribbon unit cell size.
As these complex wave vectors are the analytical continuation
from the gap at the K points, with nonzero values, they have a
real component which gives rise to the oscillations.

Notice that, since the bilayer leads are the same in any
AB/BA boundary, irrespectively of the particular geometry
of the transition region, we can expect the same oscillating
behavior in other types of stacking boundaries, such as those
produced by strained bilayer regions [30] or by shifting one of
the layers along the boundary [29].

The second gap-localized state with E; = 0.2 eV is also
distributed mainly at the corrugation. However, it is more
strongly localized at the uncoupled nodes of the bottom
layer than E;. Its behavior is approximately as that of E;
exchanging the top and bottom layers and the A and B
sublattices simultaneously. We have verified that the numerical
agreement between the fitted values and those extracted from
the complex band structure is excellent in other states with
sharper oscillations produced by higher values of V.

IV. CORRUGATED BILAYER GRAPHENE

We consider now a 2D bilayer graphene with either one
isolated stacking boundary, or with periodically repeated folds.
The orientation of the fold is as described in Sec. IT A, namely,
along the zigzag direction. Thus the flat bilayer and the
corrugation have translational symmetry in the y direction.

In 2D systems, we can consider two different geometries to
evaluate the conductance: either perpendicular to the stacking
boundary or along it. We start with the same configuration
as for the nanoribbons, that is, transport perpendicular to the
corrugation. We will next examine a periodically repeated fold
in order to elucidate the conductance along the corrugations.

A. Single fold in bilayer graphene

We first consider a 2D graphene bilayer with one corru-
gation. Like in the finite ribbons, we take the current to flow
perpendicularly to the fold. In this sense, the flat bilayers act
as leads.

Figure 5 shows the conductance between the bilayer leads
and projected LDOS [68] at the corrugation as functions of k
and E, with and without gate voltage. The corrugation lengths
are Ng = 6 and Ny = 10, and the LDOS(E,k) is summed over
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FIG. 5. (Color online) Conductance between leads (left) and
LDOS at the corrugation (right) for the Ny = 6 and Ny = 10 case as
functions of the energy £ and wave vector k. (a) and (b) V = 0; (c)
and (d) V = 0.3 V applied to the bottom layer. Notice that the LDOS
scale is logarithmic.

all nodes in the unit cell of the fold. The results are shown for
k > 0. As we consider the current flowing from the left to the
right lead, we focus on the Dirac cone at positive k stemming
from K’ of the reciprocal graphene lattice. Negative k values
are therefore related to K, which is its mirror reflection in the
present geometry. The only difference is thus the sign of the
carriers’ velocity. Comparing the plots in Figs. 5(a) and 5(c),
with V = 0 and 0.3 V, respectively, we observe the expected
energy shift of the conductance and LDOS as well as the
appearance of the conductance gap due to the voltage. This gap
opening can be also seen in the corresponding LDOS(E , k) plot
[Fig. 5(d)]. More importantly, we have two bands crossing the
gap and connecting the two bulk continua when V is applied,
which constitute two localized states in the corrugation of
topological origin due to the change from AB to BA stacking.
These states are valley-polarized; they give no contribution
to the conductance for this current direction, but will carry a
valley-polarized current along the fold.

Figure 6 shows the LDOS for two instances of large
corrugations in bilayer graphene, Ng = 14 and Np =23
[panel (a)] and Np =30 and Ny =48 [panel (b)]. With
increasing Np and N, we observe the appearance of more
bands in the gap. Differently to the stacking boundary bands
of topological origin, which cross the gap, they start and end in
the same cone (upper or lower). These bands correspond to the
eigenstates of the two finite layers composing the corrugation
region. They are quantum-well-like states arising from the
finite-size effect imposed by the change from the bilayer
regions to two uncoupled monolayers of different size.

Figure 6(c) is a zoom of the LDOS shown in Fig. 6(b), for a
corrugation given by Np = 30 and Ny = 48. The successive
crossings and anticrossings of these localized bands indicate
the existence of two types of symmetry, labeled as S1 and
S2. The topological states have the same type of symmetry
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FIG. 6. (Color online) LDOS as a function of the energy E and
wave vector k at the corrugation, summed over all its nodes, for two
large corrugations: (a) Np = 14 and Ny = 23 and (b) Nz = 30 and
N7 = 48. Because of the large values of the LDOS at the localized
states, the LDOS scale is logarithmic. (¢) Zoom of the gap states
presented in (b), with two types of symmetries labeled as S1 and
S2; the topologically protected states are marked with an asterisk.
(d) Layer-resolved LDOS of the same system, In(LDOS z/LDOS7),
plotted only when LDOSjy + LDOS; is larger than a threshold
value 1073,

(S1), while the quantum-well-like states appear with S2 and
S1 alternately. In order to elucidate these symmetries, we have
calculated the wave functions of a related periodic system—a
BLG with a periodic corrugation of the same characteristics.
We find that S1 states have horizontal (along the x direction)
nodal surfaces in the corrugation, while S2 states have also
vertical nodal surfaces.

Figure 6(d) shows the same bands from panel (c), now
distinguishing between bottom (red) and top (blue) layer
localization. There is a remarkable exchange of localization
between layers at the anticrossings, due to the hybridization
between these bands.

1. Folded ribbons from discretizing 2D corrugated graphene

The analysis of bilayer graphene with a single fold allows us
to understand the size dependence of the gap states appearing
in the 1D ribbons described in the previous section. In the
same way that an armchair ribbon may be treated as a strip
cut of the infinite plane, we expect that the properties of the
corrugated ribbon with a particular width can be obtained by
imposing the proper quantization rules along the y direction to
the 2D LDOS(E k) and G(E k) calculated for the corrugated
bilayer graphene (Fig. 5). If a bilayer armchair ribbon of width
W is cut from a graphene bilayer oriented as in Fig. 1, the
corresponding wave functions should vanish for y = 0 and
y=W+ %)a, where a is the graphene lattice constant. That

. . T
gives us the quantization rule for the k, vector, k, = W+ Da
where ¢ = 1,...,W. According to this, for a particular W
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value, the LDOS of the ribbon is the sum of LDOS for all
kg4 calculated for all the allowed g values. The same can be
said for the conductances. We can compare Fig. 2 with Fig. 5.
For V = 0, we observe a conductance drop when one of the
allowed k, values is equal to %%, it would be a cut of the
2D plot in Fig. 5(a) through the middle of the cone, yielding
a low conductance as in Fig. 2(a). After applying this rule
to the nonzero V case [see Fig. 3(a) with Fig. 5(d)], we see
the W dependence of the localized states. Note that allowed
k values include %% when W = 3m + 1, which is always the
case for the metallic ribbons considered in this work. For
narrow ribbons, the energies of the gap-localized states for
fixed Ngp and Ny do not depend on W because they stem
from %% However, for W > 25, there are other k, values
which cross the stacking boundary bands lying in the gap,
giving rise to more localized states whose energies do depend
on W.

B. Periodic corrugations in bilayer graphene:
conducting topological states

We have already seen how the conductance through the
corrugation is lowered due to the stacking change, and
explained this reduction. We have also shown that gap states
in corrugated domain walls give no contribution to the current
perpendicular to the fold. However, we expect these states to
be conducting along the corrugation. In order to verify this,
we consider a bilayer graphene with periodic corrugations
separated with long Bernal stacking regions of size d in
translational BLG unit cells along the armchair direction
x. We calculate the conductance in the y direction. We
verify the relation of topological states with the stacking
change by considering two cases: corrugations between Bernal
regions with opposite stackings (AB and BA alternately) and
corrugations connecting bilayer areas with the same stacking
(AB to AB).

For this geometry and transport setup, the conductance is
a function of the wave vector in the x direction, k.. As we
are interested in the current flowing along the corrugation,
we take k, = 0. This assumption implies that the current is
measured with a local probe that makes the contribution of
other scattering directions negligible. In Fig. 7(a), we show
the conductance for a periodically corrugated bilayer graphene
plane with alternate AB and BA regions. A gate voltage V =
0.3 V is applied. Figure 7(b) shows the band structure of
this system as a function of k, calculated for k, = 0, where
one can see the four bands crossing the Fermi level, related
to the two corrugations in the unit cell. We can correlate all
the features of the conductance with the bands. Indeed, if we
increase the size of the corrugation or the distance between
them, there is a general rise of the conductance related to the
increasing number of bands. However, around the Fermi level
the conductance is always equal to 4Gy. This is due to the
fact that the topologically protected states are the only ones
crossing Ef.

In contradistinction, the conductance and bands calculated
for a similar system but without stacking change, i.e., where
all bilayer regions are AB, shows no topologically protected
states at the corrugations. We present the conductance and
band structure for this corrugated bilayer without stacking
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FIG. 7. Conductances and band structures E(k,) calculated for
k. = 0 of graphene bilayers with periodic corrugations (Ng = 6,
N7y = 10). The separation between folds is d = 10 unit cells and
the applied gate voltage is V = 0.3 V. (a) and (b) correspond to the
case where the corrugations constitute stacking boundaries between
AB and BA regions. In (c¢) and (d), the corrugations separate bilayer
areas with the same stacking.

boundaries in Figs. 7(c) and 7(d), respectively. In the absence
of topologically protected states, there is a conductance gap,
since the bands related to the corrugation eigenstates bend
back and do not cross the Fermi level.

V. SUMMARY

We have explored the electronic and transport properties
of bilayer graphene and the corresponding metallic graphene
nanoribbons with corrugations resulting in AB/BA stacking
boundaries. We have focused on the transitions between AB
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and BA zigzag-ended stackings in the shape of a fold formed
by half a nanotube and a nanoribbon.

Without an external gate voltage, these systems are gapless,
but present a conductance gap due to the symmetry mismatch
related to the simultaneous exchange of sublattices and layers.
The application of a gate voltage produces the appearance of
gap states at the corrugation that are topologically protected in
the absence of intervalley mixing.

For larger folds, more localized states appear at the corru-
gation, which we relate to quantum-size effects. These states
are gapped, contrarily to those stemming from the change
of stacking. We have analyzed the spatial dependence and
transport properties of all these corrugation-localized states,
verifying their oscillatory decay far from the corrugation,
which we have related to the complex band structure of the
bilayer regions. Since the decay constants and oscillation
periods only depend on the external AB and BA bilayer
regions, our results can be also extended to other types of
stacking boundaries between them.

Finally, we have shown that these states are conductive
along the folds, constituting robust conductance channels that
can be easily identified by their spatial shape, being extended
folds or corrugations across bilayer graphene regions.
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