767 research outputs found
Weak and strong coupling limits of the two-dimensional Fr\"ohlich polaron with spin-orbit Rashba interaction
The continuous progress in fabricating low-dimensional systems with large
spin-orbit couplings has reached a point in which nowadays materials may
display spin-orbit splitting energies ranging from a few to hundreds of meV.
This situation calls for a better understanding of the interplay between the
spin-orbit coupling and other interactions ubiquitously present in solids, in
particular when the spin-orbit splitting is comparable in magnitude with
characteristic energy scales such as the Fermi energy and the phonon frequency.
In this article, the two-dimensional Fr\"ohlich electron-phonon problem is
reformulated by introducing the coupling to a spin-orbit Rashba potential,
allowing for a description of the spin-orbit effects on the electron-phonon
interaction. The ground state of the resulting Fr\"ohlich-Rashba polaron is
studied in the weak and strong coupling limits of the electron-phonon
interaction for arbitrary values of the spin-orbit splitting. The weak coupling
case is studied within the Rayleigh-Schr\"odinger perturbation theory, while
the strong-coupling electron-phonon regime is investigated by means of
variational polaron wave functions in the adiabatic limit. It is found that,
for both weak and strong coupling polarons, the ground state energy is
systematically lowered by the spin-orbit interaction, indicating that the
polaronic character is strengthened by the Rashba coupling. It is also shown
that, consistently with the lowering of the ground state, the polaron effective
mass is enhanced compared to the zero spin-orbit limit. Finally, it is argued
that the crossover between weakly and strongly coupled polarons can be shifted
by the spin-orbit interaction.Comment: 11 pages, 5 figure
Poynting's theorem and energy conservation in the propagation of light in bounded media
Starting from the Maxwell-Lorentz equations, Poynting's theorem is
reconsidered. The energy flux vector is introduced as S_e=(E x B)/mu_0 instead
of E x H, because only by this choice the energy dissipation can be related to
the balance of the kinetic energy of the matter subsystem. Conservation of the
total energy as the sum of kinetic and electromagnetic energy follows. In our
discussion, media and their microscopic nature are represented exactly by their
susceptibility functions, which do not necessarily have to be known. On this
footing, it can be shown that energy conservation in the propagation of light
through bounded media is ensured by Maxwell's boundary conditions alone, even
for some frequently used approximations. This is demonstrated for approaches
using additional boundary conditions and the dielectric approximation in
detail, the latter of which suspected to violate energy conservation for
decades.Comment: 5 pages, RevTeX4, changes: complete rewrit
Electromagnetic wave refraction at an interface of a double wire medium
Plane-wave reflection and refraction at an interface with a double wire
medium is considered. The problem of additional boundary conditions (ABC) in
application to wire media is discussed and an ABC-free approach, known in the
solid state physics, is used. Expressions for the fields and Poynting vectors
of the refracted waves are derived. Directions and values of the power density
flow of the refracted waves are found and the conservation of the power flow
through the interface is checked. The difference between the results, given by
the conventional model of wire media and the model, properly taking into
account spatial dispersion, is discussed.Comment: 17 pages, 11 figure
Quantum simulation of small-polaron formation with trapped ions
We propose a quantum simulation of small-polaron physics using a
one-dimensional system of trapped ions acted upon by off-resonant standing
waves. This system, envisioned as an array of microtraps, in the
single-excitation case allows the realization of the anti-adiabatic regime of
the Holstein model. We show that the strong excitation-phonon coupling regime,
characterized by the formation of small polarons, can be reached using
realistic values of the relevant system parameters. Finally, we propose
measurements of the quasiparticle residue and the average number of phonons in
the ground state, experimental probes validating the polaronic character of the
phonon-dressed excitation.Comment: accepted for publication in Phys. Rev. Let
Improving Reliability of Subject-Level Resting-State fMRI Parcellation with Shrinkage Estimators
A recent interest in resting state functional magnetic resonance imaging
(rsfMRI) lies in subdividing the human brain into anatomically and functionally
distinct regions of interest. For example, brain parcellation is often used for
defining the network nodes in connectivity studies. While inference has
traditionally been performed on group-level data, there is a growing interest
in parcellating single subject data. However, this is difficult due to the low
signal-to-noise ratio of rsfMRI data, combined with typically short scan
lengths. A large number of brain parcellation approaches employ clustering,
which begins with a measure of similarity or distance between voxels. The goal
of this work is to improve the reproducibility of single-subject parcellation
using shrinkage estimators of such measures, allowing the noisy
subject-specific estimator to "borrow strength" in a principled manner from a
larger population of subjects. We present several empirical Bayes shrinkage
estimators and outline methods for shrinkage when multiple scans are not
available for each subject. We perform shrinkage on raw intervoxel correlation
estimates and use both raw and shrinkage estimates to produce parcellations by
performing clustering on the voxels. Our proposed method is agnostic to the
choice of clustering method and can be used as a pre-processing step for any
clustering algorithm. Using two datasets---a simulated dataset where the true
parcellation is known and is subject-specific and a test-retest dataset
consisting of two 7-minute rsfMRI scans from 20 subjects---we show that
parcellations produced from shrinkage correlation estimates have higher
reliability and validity than those produced from raw estimates. Application to
test-retest data shows that using shrinkage estimators increases the
reproducibility of subject-specific parcellations of the motor cortex by up to
30%.Comment: body 21 pages, 11 figure
Phonon Coherence and New Set of Sidebands in Phonon-Assisted Photoluminescence
We investigate excitonic polaron states comprising a local exciton and
phonons in the longitudinal optical (LO) mode by solving the Schr\"{o}dinger
equation. We derive an exact expression for the ground state (GS), which
includes multi-phonon components with coefficients satisfying the Huang-Rhys
factors. The recombination of GS and excited polaron states gives one set of
sidebands in photoluminescence (PL): the multi-phonon components in the GS
produce the Stokes lines and the zero-phonon components in the excited states
produce the anti-Stokes lines. By introducing the mixing of the LO mode and
environal phonon modes, the exciton will also couple with the latter, and the
resultant polaron states result in another set of phonon sidebands. This set
has a zero-phonon line higher and wider than that of the first set due to the
tremendous number of the environal modes. The energy spacing between the
zero-phonon lines of the first and second sets is proved to be the binding
energy of the GS state. The common exciton origin of these two sets can be
further verified by a characteristic Fano lineshape induced by the coherence in
the mixing of the LO and the environal modes.Comment: 5 pages, 3 figures 1 figure (fig. 1) replaced 1 figure (fig. 2)
remove
Research Note:<br>Use of a distributed erosion model (AGNPS) for planning small reservoirs in the Upper Torysa basin
International audienceThis paper assesses the vulnerability to erosion of the soils in the upper Torysa catchment down to the planned drinking water reservoir at Tichy Potok (Slovakia). Experimental observations in the Torysa catchment, together with the outputs of the AGricultural Non-Point Source pollution model (AGNPS), have been used to select optimal sites for small sediment-trapping dams on the Torysa tributaries. The rainfall scenario for the upper Torysa was determined from records at the Plavec climate station from 1980?1998. In addition, an extreme rainfall event scenario was envisaged (100 mm rainfall in three hours); AGNPS model simulations suggest that such an event might produce as much as half or even the total amount of sediment generated by all the rainfalls over the whole period of simulation, 1980?1998. Keywords: erosion, sediment transport, simulation, AGNPS model, Torysa basi
- …