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Abstract 

The present contribution briefly reviews the state-of-the-art in functional magnetic resonance 
imaging (fMRI) data exploratory analysis. Hypothesis-driven methods are discussed in 
contrast with data-driven model-free techniques in the context of processing and interpretation 
of brain imaging data. The specificity of applying various exploratory methods to fMRI time 
series is highlighted and, consequently, their benefits and limitations are comparatively 
pointed out and typified by experimental investigations reported in literature and by our own 
research as well. The emphasis is put on the independent component analysis (ICA) 
considered as a promising data-driven multivariate approach to neuroimaging data analysis. 
ICA is based on a minimum of statistical assumptions on the latent sources, namely non-
Gaussianity and mutual independence, and it allows to discover in data feature reporting on 
the organization of the nervous system. In this respect, we reconsidered some previously 
published data on neural substrates of response inhibition in a visuo-motor task and which, 
subject of ICA, revealed activity predominantly localized to auditory regions, with time 
courses consistent with the experimental paradigm. Our results concluded that exploratory 
approaches can discover activity in fMRI data beyond that predicted in advance and modeled 
as regressors in a linear model, so that new independent regressors may be added in a linear 
model with potential benefits in model accuracy and physiological interpretation. 
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INTRODUCTION 
 

Biomedical signals are a rich source of information about physiological processes, but 
they are typically mixtures of unknown combinations of sources summing differently at 
different loci, and often contaminated with artifacts and/or noise. Further, for many data sets 
even the nature of the sources is an open question. In recent years, advanced non-invasive 
medical imaging techniques such as positron emission tomography (PET), dynamic computer 
tomography (CT), and magnetic resonance imaging (MRI) has been introduced into 
biomedical practice. Beyond the plain imaging of morphological structure, the analysis and 
visualization of biomedical image time-series data is a challenge with growing importance for 
both basic research and clinical application. In this respect, functional MRI (fMRI), as a non-
invasive technique in localizing dynamic brain processes in intact living brain, is by far the 
most complex and informative approach in neuroscience imaging. Specifically, fMRI is used 
to track brain function, by visualizing changes in chemical composition of brain areas or 
changes in the flow of fluids that occur over time spans of seconds to minutes. It is based on 
the magnetic susceptibilities of oxygenated hemoglobin (HbO2) and deoxygenated 
hemoglobin (HbR) and is used to track blood-flow-related phenomena accompanying or 
following neuronal activations. The classical principle behind detecting activations using 
fMRI is essentially a voxel-by-voxel t-test on a series of images acquired under different 
conditions [Friston et al., 1995; Worseley and Friston, 1995]. The index of neuronal activity 
used generally in brain imaging data analysis is the blood oxygenation level dependent 
(BOLD) contrast [Ogawa et al., 1990]. The basic assumption is that an increase in neuronal 
activity within a brain region entails an increase in local blood flow, leading to reduced 
concentrations of deoxyhemoglobin in the blood vessels. Unlike oxyhemoglobin that is 
paramagnetic ( )0>χ , the deoxyhemoglobin is diamagnetic ( )0<χ , which means a different 
magnetic susceptibility, χ , in relation to the surrounding tissue. Therefore, relative decreases 
in deoxyhemoglobin concentration attract a reduction in local field unhomogeneity and a 
slower decay of the MR signal, resulting in higher intensities in T2* (spin-spin relaxation 
time) weighted images (Fig. 1). 

The main benefits of fMRI as a 
technique to image brain activity 
related to a specific task or sensory 
process include: (i) the signal does 
not require injections of radioactive 
isotopes, (ii) the total scan time 
required is short, such as on the 
order of 1.5 to 2.0 min per run 
(depending on the paradigm), and 
(iii) the in-plane resolution of the 
functional image is generally about 

 

Fig. 1 – Level of HbR and CBV are basal in normal blood flow 
(left), whereas an increase in flow (right) entails increased CBV 
and decreased HbR due to lower field gradients around vessels, 
which increases the MRI signal. 
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5151 .. × mm2, although resolutions less than 1 mm are possible. 
The analysis of fMRI brain data is a complex task, since the fMRI signals have varied, 

unpredictable time courses that represent the summation of signals from hemodynamic 
changes as a result of neural activities, from subject motion and machine artifacts, and from 
physiological cardiac, respiratory and other pulsations. The relative contribution and exact 
form of each of these components are largely unknown, suggesting analysis methods of blind 
source separation (BSS) type. A general trend in data analysis consists in finding an adequate 
representation of multivariate data, which is expected to provide the underlying factors 
describing their origin and essential structure. Linear transformations are often envisaged to 
perform such a task due to their computational and conceptual simplicity. Some common 
linear transformation methods are principal component analysis (PCA), factor analysis (FA), 
projection pursuit (PP) [Huber, 1985], and more recently the independent component analysis 
(ICA). ICA [Comon, 1994; Cardoso, 1998] has emerged as a useful extension of nonlinear 
PCA and developed in context with BSS [Bell and Sejnowski, 1995; Cardoso, 1998] and 
digital signal processing (DSP). ICA is also related to recent theories of the visual brain, 
which assume that consecutive processing steps lead to a progressive reduction in the 
redundancy of the representation [Barlow, 1961; Olshausen and Field, 1996]. It is also related 
to work on sparse [Field, 1994] and low entropy coding [Atick, 1992].  

The analysis of large and complex data sets is efficiently performed by two overlapping 
classes of techniques known as exploratory data analysis (EDA) and data mining. EDA helps 
to cope with data in a fairly informal way and reveal structure relatively quickly and easy. The 
emphasis is on flexible probing of data, often before comparing them to any probabilistic 
model. EDA is used to identify systematic relations between variables when there are no (or 
not complete) a priori expectations as to the nature of those relations. In a typical EDA 
process, many variables are taken into account and compared, using a variety of techniques in 
search for systematic patterns. The methods of EDA are best compromises for a broad range 
of situations and, quite often, are close to best solution for each situation alone. However, the 
exploration of data can only serve as the first stage of data analysis and its results can be 
treated as tentative at best as long as they are not confirmed (e.g., crossvalidated) using a 
different data set or an independent subset. If the result of the exploratory stage suggests a 
particular model, then its validity can be verified by applying it to a new data set and testing 
its fit such as testing its predictive validity. Case selection conditions can be used to quickly 
define subsets of data (e.g., for estimation and verification), and for testing the robustness of 
results [StatSoft].  

Data mining is an analytic process designed to explore usually large amounts of data in 
search of consistent patterns and/or systematic relationships between variables, and then to 
validate the findings by applying the detected patterns to new subsets of data. The ultimate 
goal of data mining is prediction, hence predictive data mining is the most common type of 
data mining. Basically, the process of data mining consists of three stages: (i) the initial 
exploration, (ii) model building or pattern identification with validation/verification, and (iii) 
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deployment, which means the application of the model to new data in order to generate 
predictions. Data mining is, nevertheless, based on the conceptual principles of statistics 
including the traditional EDA and modeling, and it shares with them both some components 
of its general approaches and specific techniques. An important general difference in the 
focus and purpose between data mining and EDA is that data mining is more oriented 
towards applications rather than the basic nature of the underlying phenomena. In this respect, 
data mining is relatively less concerned with identifying the specific relations between the 
involved variables, rather its focus is on producing a solution that can generate useful 
predictions. Therefore, data mining accepts a black box approach to data exploration or 
knowledge discovery and uses not only EDA techniques, but also complex analytic 
techniques like neural networks (NNs), which can generate valid predictions but are not 
capable of identifying the specific nature of the interrelations between the variables on which 
the predictions are based.  

EDA and data mining emphasize flexible searching for clues and evidence in data, 
whereas confirmatory data analysis (CDA) stresses evaluating the available evidence. ICA 
typifies the exploratory methods searching for a suitable linear transformation of a random 
vector onto a basis that minimizes the statistical dependence between its components. Spatial 
transformations are ubiquitous and essential for the proper characterization of evoked 
hemodynamics changes in fMRI data analysis, both in terms of removing unwanted variance 
from data and in terms of anatomical localization. The applications of ICA to human brain 
electromagnetic data have proved meaningful applied to a set of average responses in 
separating the observed spatially labile activity into spatially fixed components that account 
for the responses in all the conditions [Makeig et al., 1997].  

 
 

II. NEED FOR EXPLORATORY ANALYSIS OF FUNCTIONAL MRI DATA 
 

The current techniques (Fig. 2) for analyzing fMRI data can be loosely dichotomized into 
either data-driven (model-free) methods, such as PCA, ICA, and clustering analysis, or 
hypothesis-led (model-driven) methods, like the general linear model (GLM) [Friston, 1996]. 
These two approaches are complementary and mirror the exploratory and confirmatory 
aspects of scientific investigation. Imaging studies driven by hypotheses derived from 
cognitive psychology and related disciplines can at best support or refute currently formulated 
psychological models. Unanticipated time courses of activation of localized brain areas are 
less likely to be discovered with such analysis methods [McKeown et al., 1998a].  

Frequently, fMRI experiments reveal coactivation of spatially disparate brain regions, 
which cannot be rigorously investigated with univariate techniques, because they examine 
each voxel individually to determine if a give voxel is deemed task-related by a specified 
criterion and ignore the relationships between voxels. As for instance, two voxels may both be 
individually correlated with the task reference function (an estimate of the expected task-
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related changes seen in a voxel) above a certain threshold, yet be uncorrelated with one 
another. The voxels found task-related on the base of some statistical significance test (e.g., 
exceeding a predefined level of significance of a t-statistic under the null hypothesis that the 
distribution of voxel values are identical during control and experimental conditions) are 
subsequently assembled to form a spatially distributed map of task-related activation. 
Contrarily, multivariate techniques separate data into a set of spatial patterns of activity 
(maps), enabling the analysis of co-activation in spatially divergent areas within a given map. 
 

 
 
Fig. 2 – Some typical univariate/multivariate hypothesis/data-driven analysis methods specified along with their 
main strong points ( + ) and pitfalls ( – ). 
 
 

In data-driven analysis no statistical model about what inferences are made need to 
specify. Multivariate data analysis relies on the covariance paradigm and is free of prior 
assumptions on activation functions. Contrary to inferential approach, exploratory data 
analysis is capable to detect the functional activity without reference to the experimental 
protocol and can also reveal new components in the data. Generally, neuromorphic and alike 
methods of unsupervised learning fall in the class of data-driven analysis [Barlow, 1987], 
such as eigenimage analysis, self-organizing artificial neural networks, temporal clustering 
analysis (CA) and fuzzy clustering analysis (FCA), factor analysis (FA), projection pursuit 
(PP), PCA, and ICA.  
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Tukey [1962] argued that classical statistics leaning on analyzing small, homogeneous, 
stationary data by means of known distributional models and assumptions will prove 
inappropriate to deal with the problems raised by the analysis of large and complex data. A 
typical 3D multislice volume fMRI brain dataset for a single subject ranges from 810  to 1010  
bytes, and the values increase further in simultaneous inter-subject studies. Two features of 
fMRI data, which are characteristics for massive datasets, are nonstationarity and 
distributional heterogeneity. It is claimed that the difference between real-life large datasets 
and smaller ones consist not only in size but in qualitative terms as well [Huber, 1994]. 
Consequently, the investigations of functional brain imaging data should primarily rely on 
critical consideration of methods that belong to data mining and exploratory data analysis. We 
consider that the analysis of typically large, complex, and rather heterogeneous fMRI data 
ought to start with an exploratory method that will reveal the intrinsic structure in data with 
no need for prior models and assumptions. A critical evaluation and comparison of the data-
driven methods used in fMRI data analysis has not been published to date. Besides, as briefly 
stated by Huber [1994], “… there are no panaceas in data analysis” either. In other words, all 
methods have highs and lows, so that an educated choice appears problem domain-dependent.  

The constraints imposed by PCA and FA, which segregate data by partitioning its total 
variance into uncorrelated components, appear unrealistic in fMRI since may lead to 
ambiguous separation of time courses corresponding to activation, noise, and artifacts. This is 
due to the relative small amplitude of the task-related components and non-specificity of 
variance partitioning. Variance partitioning in ICA is based on mutual information (MI), 
though constraints of spatial and/or temporal statistical independence, as well as non-
Gaussianity are imposed, which may only partly be true in real data. Most applications of ICA 
include PCA as a preprocessing step for whitening data, dimension reduction, and/or filtering 
out some noise, though by removing the many smallest principal components one runs the 
risk of potentially removing small details of interest. Individual PCA components are 
necessarily both spatially and temporally uncorrelated, making them unlikely to represent 
functionally distinct brain systems. Rotation methods such as Varimax and Promax 
(Hendrickson and White, 1994; Makeig et al., 2000) might be used to relax the orthogonality 
constraint, but their utility for fMRI data analysis has not yet been explored and the relevance 
of their underlying assumptions to fMRI data may also be questionable [Duann et al., 2002]. 
Additional possible limitations of ICA refer to linearity and the global characterization of data 
(i.e., even if data sets are statistically heterogeneous, ICA attempts to describe them using the 
same global features as if the data were spatially homogeneous) [Somorjai and Jarmasz, 
1999]. Theoretically, nonlinear ICA might circumvent the distributional heterogeneity [Parra 
et al., 1996], though its implementation becomes rather computationally intensive. A fast 
deflation-type fixed-point based ICA algorithm introduced by Hyvärinen and Oja [1997] 
relaxed considerably the computational demand of ICA. In contrast, clustering, and 
particularly FCA, is local in the sense that the cluster centroids do not consist of linear 
combinations of the time courses of activations, hence does not get confounded by global 



 7

heterogeneity. Moreover, algorithmic implementation of FCA can be made fast, which is 
important in processing large and complex data sets. FCA and ICA are complementary in the 
sense that spatial ICA could be used subsequently to FCA if it appears that the centroids are 
linear mixtures of well-defined temporal shapes. This view advanced by Somorjai and 
Jarmasz [1999] was supported by Karhunen et al. [2000], who proposed a preprocessing step 
by k-means clustering of data. The idea behind k-means clustering is to classify individual 
voxels in the volume with respect to their activation time courses. A k-means algorithm needs 
k cluster centroids to be chosen of the same dimensionality as the time series, then each voxel 
is assigned to the cluster centroid with the best match. Subsequently, local ICA performs 
demixing of the k clusters (or their centroids). In conditions where the time courses of 
activation change significantly in amplitude during experiments, wavelet analysis (WA) can 
more accurately detect activations than most commonly used data analysis methods invoked 
so far [Brammer, 1998]. 

Whatever method or combination of methods would be used in exploratory analysis to 
discover new hypotheses (models) extracted directly from data, they have to be subsequently 
tested and verified by some more conventional statistical inferential methods of analysis. The 
combined information gathered from two or more methods may reveal structure in data that 
any single method could not have provided. The more an approach embeds prior knowledge 
that we are aware of about the structure to be discovered, the higher the chance of its 
detection. This suggests starting the analysis in an adequate Bayesian framework that 
incorporates all available information on the data and continuously updates the state of 
knowledge when new data are presented [Mutihac et al., 2000]. We limited our comments to 
mostly compelling exploratory techniques that were reported to have been employed so far in 
fMRI data analysis and pinpointed their ability to cope with large datasets. Due to low level 
signals generated in blood-flow techniques, the most of the functional neuroimaging 
approaches have primarily been developed to rely upon averaging data across time and/or 
space, which cancels out random processes including spurious noise. Most often, fMRI data 
preprocessing includes PCA dimension reduction, which may discard some small but 
significant components. ICA yields components as independent as possible even if the 
assumption of source independence holds only loosely, and no intrinsic meaning is associated 
with them either. It is therefore compulsory to thoroughly check the validity of the 
assumptions on which ICA decomposition is based in order to evaluate the reliability and 
infer the functional significance of the resulting components. In this respect, a correct 
estimation of the data model complexity (i.e., the number of relevant estimated components) 
makes the interpretation task easier and more meaningful [Mutihac et al., 2004] along with 
reducing the computational demand. 
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III. ICA MODEL 

 

3.1 Data modeling 
 

Basically, the linear, stationary, noise-free ICA model (Fig. 3) transforms an M-
dimensional random vector ( ) ( )( )t,...,XtX M1=X  into an estimated vector ( ) ( )( )t,...,YtY M1=Y  

of the original source signals ( ) ( )( )tStS N1 ,...,=S  that are assumed mutually statistically 

independent and non-Gaussian distributed. The observed signals X are linear mixtures of the 
original signals ASX =  at any sample index t (e.g., time), where A is a fixed mixing matrix 
of size NM × . Mixing is assumed to be instantaneous, so there is no time delay between the 
source signals iS , N21i ,...,,=  mixing into an observable signal jX , M21j ,...,,=  . Both the 

original (source) signals and the mixing matrix are generally unknown, but the number of 
observed mixtures M should exceed or equal the number of source signals N and the matrix A 
should be full-column rank. The ICA task is to find the best estimators for the original source 
signals S, that is BXSY == ˆ , where the separating matrix B is the (pseudo)inverse of the 
mixing matrix A, in such a way that the estimates are as statistically independent as possible. 
It can be shown [Hyvärinen et al., 2001] that the problem is well-defined, that is, the model 
can be estimated if and only if the components { }iS  are non-Gaussian. This is a fundamental 

requirement setting the main difference between ICA and factor analysis, in which the non-
Gaussianity of data is not taken into account [Spearman, 1927]. In fact, ICA could be 
considered as non-Gaussian FA, since data are also modeled in FA as linear mixtures of some 
underlying factors.  

It is remarkable that the latent sources can be estimated from linear mixtures on the basis 
of their independence and non-Gaussianity assumption only. Uncorrelatedness is not enough 
to separate the components, which is the reason why PCA and FA yield uncorrelated 
components but fail to separate the original source signals. We can transform any linear 
mixture of independent components (ICs) into uncorrelated components by using common 
decorrelation methods, in which case the mixture is orthogonal [Hyvärynen et al., 2001]. The 
goal in ICA is to estimate the orthogonal transformation that is left after decorrelating the 
observed data, a goal that cannot be achieved by classical methods since they are based on 
essentially the same covariance information as decorrelation. For random variables that are 
merely uncorrelated, nonlinear transformations do not have zero covariance in general. Thus, 
ICA makes use of a stronger form of decorrelation, by finding a representation where the 
estimates are uncorrelated even after some nonlinear transformations. 
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Fig. 3 – Standard (stationary, linear, noise-free) ICA model. 
 
 
3.2 ICA Estimation Principle 
 

There are many methods for estimating the ICA model. Their common feature is that they 
consider some form of higher-order statistics, which specifically means information not 
contained in the covariance matrix of the observed data. Using the covariance matrix, we can 
decorrelate the components in the ordinary linear sense, but not any stronger. Two kinds of 
higher-order information are currently used for ICA modeling, though some others may be 
used as well: the nonlinear correlations and kurtosis.  

Nonlinear decorrelation is probably the basic ICA method. It may be stated as finding a 
matrix B, so that for any ji ≠ , the components iY  and jY  are uncorrelated, and the 

transformed components ( )iYg  and ( )jYh  are uncorrelated, where g  and h  are some suitable 

nonlinear functions. If the nonlinearities are adequately chosen, then this method comes up 
with the independent components. The principles for proper choice of the nonlinearities are 
recommended by the estimation theory (which provides methods like maximum likelihood of 
estimating any statistical model) and information theory (which provides exact measures of 
independence like mutual information). 

Maximum non-Gaussianity of the estimated components is an intuitive and practical 
method for ICA. Its formulation is to find the local maxima of non-Gaussianity of a linear 
combination of the observed variables ∑=

i
ii XbY  under the constraint that the variance of Y 

is constant. Each local maximum must give one independent component, otherwise, if it were 
a mixture of two or components, it would be closer to a Gaussian distribution due to the 
Central Limit Theorem. 
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3.3 ICA Algorithms 
 

Apart from the estimation principle, an algorithm is needed as part of ICA in order to 
implementing the computations required. Since nonquadratic functions are generally involved 
by the estimation methods, numerical algorithms are needed, which are quite computationally 
demanding. The current algorithms for ICA can be loosely classified in two categories. One 
category contains adaptive algorithms generally based on stochastic gradient methods and 
implemented in neural networks [Juten and Herault, 1991; Moreau and Macchi, 1993; Bell 
and Sejnowski, 1995; Delfosse and Loubaton, 1995; Karhunen et al., 1995; Amari, Cichocki, 
and Yang, 1996; Hyvärinen and Oja, 1996]. These algorithms exhibit slow convergence and 
their convergence depends crucially on the correct choice of the learning rate parameters. The 
other category relies on batch computation minimizing or maximizing some relevant criterion 
(objective) functions [Cardoso, 1992; Comon, 1994]. Their drawback is that require complex 
matrix or tensorial operations. 
 
 

IV. FUNCTIONAL MRI TIME SERIES 
 
4.1 Hemodynamic response-based signals 
 

Functional MRI studies rely upon the detection of small intensity changes of BOLD signal 
over time, often with a contrast-to-noise ratio of less than 1.0. Virtually all fMRI studies 
analyze the magnitude images from the MRI scanner. A standard approach is to correlate the 
time-series data with an assumed reference signal [Bandettini et a.l, 1993]. Many 
generalizations have been proposed, usually involving linear modeling approaches utilizing an 
estimate of the hemodynamic response [Worsley and Frinston, 1995]. The information 
contained in the phase images is ignored in such analyses. 

There are several types of signals that can be encoded within the hemodynamic signals 
measured by fMRI [McKeown et al., 1998c]. The separated signals are commonly classified 
as signals of interest and signals of no interest. The signals of interest include task-related, 
function-related, and transiently task-related. The task-related signal is the easiest to model. 
A reference waveform, based upon the paradigm, is correlated with the data. The responses of 
the brain to a given task may not be regular however, for example the signal may fade out 
before the stimulation is turned off or change over time as repeated stimuli are applied, 
leading to a transiently task-related signal. It is also conceivable that there are several 
different types of transiently task-related signals coming from different regions of the brain. 
The function-related signal manifests as similarities between voxels within a particular 
functional domain (e.g., the motor cortex on one side of the brain will correlate most highly 
with voxels in the motor cortex on the opposite side of the brain) [Biswal et al., 1995]. The 
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signals not of interest include physiology-related, motion related, and scanner-related signals. 
Physiology-related signals like breathing and heart rate tend to come from the brain ventricles 
(fluid filled regions of the brain) and areas with large blood vessels present, respectively. 
Motion-related signals can also be present and tend to be changes across large regions of the 
image (particularly at the edges of images) [Molgedey and Schuster, 1994]. The scanner-
related signals are generally varying in time (e.g., scanner drift and system noise) or varying 
in space (e.g., susceptibility and radio-frequency artifacts) [Beckmann et al., 2000]. Finally, 
there are also various types of noise involved in an fMRI experiment, which may be 
considered as signals of no interest. Specifically, there is noise due to the magnetic resonance 
acquisition which can be discussed in terms of (i) object variability due to quantum 
thermodynamics and (ii) thermal noise. It was shown that the thermal noise will result in 
white noise with a constant variance in the image dimension [Wang, 1995]. Additionally there 
is noise due to subject movement, brain movement, and physiologic noise. In principle, ICA 
need not explicitly model these sources of noise, rather they pop out as separate components 
[McKeown et al., 1998a,c]). Each ICA component map is described by a distribution of 
values, one for each voxel. These values represent the relative amount a given voxel is 
modulated by the activation of that component. To find and display voxels contributing 
significantly to a particular component map, the map values may be scaled to z-scores (the 
number of standard deviations from the map mean). A certain threshold may be set, so that 
voxels whose absolute z-scores are larger than the threshold are considered active voxels for 
that component. Negative z-scores indicate voxels whose fMRI signals are modulated 
opposite to the time course of activation for that component. ICA implementation fully 
characterizes the observed fMRI data by decomposing them into sparse maps, or spatial 
modes, that are spatially as independent as possible, and their associated time courses, both of 
which provide a unique representation of the data (up to scaling and permutation).  

It is important to understand the properties of signals in fMRI when developing methods 
for analyzing data. If the activations do not have a systematic overlap in time and/or space 
then the distributions can be considered independent [Calhoun et al., 2001, McKeown et al., 
1998a,b]. The temporal distribution of a task-related waveform is often nearly bimodal 
(off/on) and thus the algorithm needs to incorporate this fact. The assumption that 
components are spatially independent and add linearly was evaluated and it was concluded 
that the fMRI signals and noise are non-Gaussian and the accuracy of the ICA model may 
vary in specific regions of the brain. The signals of interest in fMRI are typically focal and 
thus have a sub-Gaussian spatial distribution [Calhoun et al., 2003]. However, the artifactual 
signals will be more varied and potentially super-Gaussian. 

Many aspects of fMRI signals are well known and could be incorporated into an ICA 
analysis. First, local spatial correlation exists in MR images due only to the acquisition 
process. It is often the case that partial k-space acquisitions involve sampling fewer frequency 
samples than the desired number of spatial samples. One can use the fact that the matrix of 
frequency data is Hermitian-symmetric to reconstruct the image using a partially acquired 
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frequency matrix (with the trade-off being a decrease in signal-to-noise ratio). Another well-
known method involves sampling the lower frequencies and padding the high frequencies 
with zero (with the trade-off being a decrease in spatial resolution). This broadens the well 
described MRI spatial point spread function in one direction, although it has been suggested 
that there is a real gain in resolution when zero padding is up to as much as twice the original 
number of samples [Constable et al., 1989]. This results in spatial correlation of the MR 
signal. In addition, spatial correlation is induced by the process being measured. The 
hemodynamic sources to be estimated have a spatial hemodynamic (vascular) point spread 
function. This is partially due to the hemodynamics, but is also a function of the pulse 
sequence and the parameters used. Differing degrees of sensitivity to blood flow and blood 
oxygenation as well as differences between low and high field magnets will measure different 
hemodynamics. The pulse sequence, parameters, and magnetic field strength are considered 
as constant to enable discussion of the hemodynamic point spread function without 
introducing the complexities of these parameters. A typical ICA model of fMRI data in 
notations that facilitate a direct comparison with the GLM is presented in Fig. 4. 
 
 

 
 
Fig. 4 – ICA model for fMRI data. The estimation of the latent sources is carried out in such a way as to 
maximize the mutual independence of the rows in the matrix S by means of an appropriate mixing matrix A. 
 
 

There may also be some degree of temporal correlation. Temporal correlation is 
introduced by: i) rapid sampling (a scanner parameter) on the time scale of the magnetic 
equilibrium constant, ii) the temporal hemodynamic (vascular) point spread function (a 
physiologic variable), and iii) poorly understood temporal autocorrelations in the data.  
 
4.2 Functional organization of the brain 
 

Functional organization of the brain is based on two complementary principles, namely 
localization and connectionism [Phillips et al., 1984]. Localization implies that each 
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psychomotor function is mainly performed in a small set of brain areas. Occasionally, some 
lesions interrupt anatomical connections between macroscopic loci required to perform a 
specific psychomotor task [Gardner, 1975; Takahashi et al., 1992; Duffield et al., 1994], yet 
the brain recovers its normal functionality. This implies the complementary principle of 
connectionism meaning that the brain regions involved in a given psychomotor function may 
be widely distributed so that the brain activity required to perform a given task may be the 
functional integration of activity in multiple microscopic loci or distinct brain subsystems 
[McKeown et al., 1998a]. Consequently, the multifocal brain areas activated by performance 
of a psychomotor task should be unrelated to the brain areas whose activity is affected by 
artifacts, such as head movements, physiological pulsations, and machine noise which may 
dominate fMRI experiments. Any of these separate processes may be represented by one or 
more spatially-independent components, each associated with a single time course of 
enhancement and/or suppression and a component map. It is assumed [McKeown et al., 
1998b] that each component map, which is specified by a spatial distribution of fixed values 
for each voxel, represents possibly overlapping, multifocal brain areas of statistically 
dependent fMRI signal influence. The maps will be independent if active voxels in the maps 
are sparse and mostly nonoverlapping though some overlap usually exists. 
 
4.3 ICA of fMRI time-series 
 

The general framework for the analysis of imaging time-series was established in positron 
emission tomography (PET) neuroimaging and extended thereafter for fMRI. Basically, two 
approaches are employed: hypothesis-driven (i.e., inferential) or data-driven (i.e. exploratory). 
Most of imaging neuroscience relies on inferential hypothesis-led analysis, which is based on 
some statistical parametric mapping (SPM) [Friston, 1995]. Testing a hypothesis reduces 
operationally to specifying what one expects to see. In SPM the image reconstruction is 
carried out using a voxel-specific statistic that tests hypotheses on dynamics. The statistic is 
usually derived under parametric assumptions using the general linear model (GLM).  

ICA, as a model-free approach, has traditionally been used in two complementary ways to 
decompose an image sequence into a set of images and a corresponding set of time-varying 
image amplitudes: spatial ICA (sICA) which finds a set of mutually independent images (i.e., 
maps) and a corresponding dual set of unconstrained time courses, and temporal ICA (tICA), 
which finds a set of independent time courses and a corresponding (dual) set of unconstrained 
images. ICA can find statistically independent signals out of linear mixtures by making use of 
the extra degrees of freedom implicit in the unconstrained dual signals, even if the underlying 
sources are not statistically independent. Therefore, ICA may come out with independent 
signals, which are not the underlying sources. A natural modification of ICA is to enforce 
constraints on dual signals as well by maximizing the degree of independence of the dual 
signals. This approach called spatiotemporal ICA (stICA) [Stone et al., 1999] maximizes the 
degree of independence over space and time simultaneously, without necessarily producing 
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independence in either space or time, but searching for the best compromise. The assumption 
that both spatial and temporal signals are independent is rarely valid in practice, so stICA 
yields solutions in which the degree of spatial independence is maximized subject to the 
constraint that the degree of temporal independence is maximized (and reciprocally). It turns 
out that stICA is based on a more physically plausible assumption that both spatial and 
temporal sources are almost independent. Sources of this type are likely to be present in a 
spatio-temporal medium like brain tissue, in which correlations in activity between nearby 
points in space and time are the norm. Such a relaxed assumption over the approximate 
independence of both the estimated components and their dual signals permits the recovery of 
sources that are correlated over time and space. 

The assumptions of ICA apply to fMRI data in a different way than to other time series 
analysis. Here the principle of brain modularity suggests that, as different brain regions 
perform distinct functions, their time courses of activity should be separable (though not 
necessarily independent, particularly when, typically, only a few hundred or fewer time points 
are available). Spatial modularity, plus the relatively high 3D spatial resolution of fMRI, 
allows the use of ICA to identify maximally spatially independent regions with 
distinguishable time courses. Decreases as well as increases in brain activity are observed, 
which allows components to have overlapping spatial regions and still be approximately 
independent. However, the spatial independence of active brain areas is not perfect, and 
therefore the nature and functional significance of independent fMRI components must be 
validated by convergent physiological and behavioral evidence (e.g., simultaneously running 
EEG). 
 
Mathematical formalism 
 

Assume that we have T components (i.e., volumes) and each component consists of V 
elements (i.e., voxels). The component map distribution is considered spatially independent, 
and hence uniquely specified. In mathematical terms, if ( )kkp C  is the probability density 

distribution (pdf) of the voxel values kC  in the k-th component map, then the joint probability 

distribution of all N components factorizes:  

( ) ( )∏
=

=
T

1k
kkN21 pp CCCC ,...,,     (1) 

where each of the component maps kC  is a vector with components V21iCki ,...,,=  , . The 

(spatial) independence of the component maps is much stronger than the decorrelation 
condition imposed by PCA, that is, the voxel values between pair of components are merely 
uncorrelated: 

∑
=

≠==⋅
T

1k
jkikji ji0CC   for      ,CC     (2) 
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since (1) implies that the higher-order correlations are also zero. Basically, independence is a 
much stronger property than uncorrelatedness. _ 

Functional MRI signals can be decomposed into a number of independent component 
maps and their associated component activation waveforms using an appropriate ICA 
algorithm. No a priori assumptions are necessary on: (i) the time courses of activation of 
different components, (ii) whether a given component is activated by specific 
psychophysiological systems or is related to machine noise or other artifacts. In linear ICA 
decomposition of fMRI data, the observed data matrix X can be transformed into a set of 
volume maps C by taking linear combinations, defined by a TT ×  unmixing matrix, W, of 
the volumes recorded at each time point (i.e., sample index) T21t ,...,,= , such as:  

WXC =       (3) 

where C is the matrix of the component maps of size VT × , X is the row zero-mean data 
matrix of size VT ×  with each row representing an entire volume (i.e., one full scan of all 
slices) recorded at each given time point (i.e., sample index) t and each column representing 
the values a certain voxel, and W is a TT ×  matrix containing the coefficients of linear 
unmixing of the volumes. An ICA algorithm can perform blind separation of input data X 
into a linear sum of time-varying modulations of maximally independent component maps, by 
iteratively building up an unmixing matrix ikW=W , which ensures a linear decomposition 

of the data like ∑
=

=
T

1k
kjikij XWC , where ijC  is the value of the j-th voxel of the i-th component 

map, kjX  is the value of the j-th voxel of the k-th data vector, and the summation runs over 

the T time points (i.e., components) of the fMRI input data. If the number of IC’s is taken 
equal to the number of time points, then the unmixing matrix W is invertible due to the 
supposition that the (unknown) mixing matrix has full-column rank. Data reconstruction from 

the IC’s follows straightforward: ∑
=

−=′
T

1k
kj

1
ikij CWX ,where ijX ′  is the reconstructed data at the 

i-th time point of the j-th voxel. In matrix notation: 

CWX 1−=′       (4) 

The protocol used to appropriately select the separation matrix W depends on the adopted 
estimation principle. In PCA [Friston et al., 1993], W in (3) is selected so that the resultant 
component maps in C are uncorrelated and summarize the variability in the data in as few 
maps as possible. In ICA [Comon, 1994, Bell and Sejnowski, 1995], W in (3) is selected such 
as the rows in C are made maximally statistically independent. It appears that the stricter 
criteria of spatial independence in ICA improves the estimates for the temporal and spatial 
extent of task-related activity and yields an efficient means for exploratory analysis of fMRI 
data [McKeown et al. 1998 b, c].  The columns of 1−W  give the time courses of activation for 
the spatial maps. Unlike PCA, ICA allows that the time courses to be non-orthogonal. 
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Assuming stationary linear mixture of brain source signals, then 1−W  is the best estimate of 
the mixing matrix. 

 
ICA specificity 

 
Some basic considerations must be discussed in applying ICA to fMRI data. First, as a 

general requirement in applying ICA to determine the separating matrix W in (3), the fMRI 
data are assumed to consist of linear sum of spatially independent patterns of activity. Task-
related activations which vary in space and time can then be modeled as consistently task-
related maps, and as several spatially independent transiently task-related maps, each with 
unique time courses, so that the sum of all task-related components provides a measure of the 
full spatiotemporal extent of the task related activity. Then, in the basic ICA model (3) used 
for fMRI analysis, there was no explicit noise model; rather, the noise was assumed to be 
distributed among one or more of the components. Secondly, note that equation (3) implies 
that the recorded data (mixtures), X, can be accurately modeled as component maps, C, 
linearly combined as specified in the matrix 1−W . Thirdly, since the fMRI data change 
through time, equation (3) assumes that this is a result of changes in the relative contributions 
from each of the component maps rather than of changes in the component maps themselves. 
In other words, the maps are considered to be fixed throughout the fMRI experiment. Finally, 
equation (3) also implies that the relative contribution from each component map at a given 
time point in the experiment is the same throughout the head. If any of the above assumptions 
are not valid, then the ICA algorithm will be less able to separate out statistically independent 
component maps. The estimated probability of observing the data under the null hypothesis 
that the ICA assumptions are valid will therefore be reduced and signal separation will be 
suboptimal  

As both a theoretical and a technical issue, the assumption of invertibility of W amounts 
to tacitly admitting that the number of time points equals the number of the independent 
components to be estimated. This is highly questionable, unless we do have prior information 
concerning the exact number of independent patterns of brain activity. Standard ICA, as a 
simple linear regression model, differs from GLM as applied in neuroimaging, in some 
important respects:  

1. The mixing process is assumed to be square, that is, the signal is not constrained to be 
contained within a lower dimensional signal subspace. However, if we assume that a 
smaller number of source processes represent the dynamics in data, a mismatch 
between the best linear model fit and the original data is inevitably introduced;  

2. Standard ICA does not include a noise model, instead, data are assumed to be 
completely characterized by the estimations of the sources and the mixing matrix. This 
precludes: (i) the assessment of statistical significance of the source estimates (i.e., the 
estimated independent components) within the framework of a null-hypotheses testing, 
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(ii) the threshold techniques (like converting the component map values into Z-scores) 
are devoid of statistical meaning and can only be conceived as ad-hoc recipes. 

The interest in spatial ICA of fMRI data stems from many reasons: 

1. ICA implementation fully characterizes the observed fMRI data by decomposing them 
into sparse maps, or spatial modes, that are spatially as independent as possible, and 
their associated time courses, both of which provide a unique representation of the 
data (up to scaling and permutation); 

2. ICA finds systematically non-overlapping, temporally coherent brain regions without 
constraining the temporal domain; 

3. ICA can reveal inter-event and inter-subject differences in the temporal dynamics 
without resorting to any prior temporal model. The temporal dynamics in fMRI 
experiments is difficult to study due to the lack of a well-understood and/or 
incomplete brain-activation model. 

4. ICA can be used to investigate the spatially distributed brain networks and functional 
connectivity of the brain. 

 
4.4 Ranking ICA Separated Components 

 
It is useful to rank order the components by the extent of their contribution to the original 

data. Unfortunately, different ICA component time courses contained in 1−W  are generally 
nonorthogonal so that, unlike PCA, the variances explained by each component will not sum 
to the variance of original data. The contribution each independent component makes to the 
magnitude of the original data may be expressed in two alternative ways [McKeown et al., 
1998a]: 

1. It can be estimated by the root mean square (RMS) of the data set reconstructed solely 
from this component using CWX 1−=′  in which C has only one nonzero row 
corresponding to the appropriate component; 

2. It can be regarded as the RMS error introduced per data point when data are 
reconstructed without this component: 

( )
21

T

1j

V

1k

2i
jki A

VT
1













⋅
= ∑∑

= =

γ     (5) 

where iγ  is the contribution to the data from the i-th component and i
jkA  is an VT ×  

matrix computed from the outer product of the i-th component map and the i-th 
column of 1−W , that is ikji

i
jk CWA 1−=  

 
 



 18

 
4.5 Pitfalls of ICA Model of fMRI Data 
 

The ICA implementation fully characterizes fMRI data by separating them into sparse 
maps, or spatial modes, and associated time courses. Employing an ICA algorithm capable of 
looking for non-sparse as well as sparse maps can find maps that all are sparse [McKeown et 
al., 1998a]. Many of these maps can be identified with known artifacts, such as blood vessel 
pulsations, head movements and slow drifts. These highly spatially structured signals are not 
easily modeled by a priori estimates as required by hypothesis-driven methods. A basic 
assumption in ICA, that the maps are spatially independent, does not preclude the possibility 
of spatial overlap because maximal independence can be achieved with overlap in high-
dimensional spaces. Nevertheless, ICA is not an ideal method of fMRI data processing and 
particular care should pay to the following issues: 

1. Functional MRI signal component processes may exhibit saturation or other nonlinear 
properties and thus may not be appropriate for analysis using exclusively a whole 
linear model. However, an assumption of additivity may be reasonable [Boynton et 
al., 1996]. 

2. ICA model assumes that the distribution of voxel values specifying the map for each 
signal component is statistically independent of the distributions of voxel values 
specifying all the other component maps. This assumption leads to an essentially 
unique decomposition and biases the ICA algorithm towards finding components 
having relatively sparse as well as discrete active component areas [McKeown et al., 
1998b]. Nevertheless, the optimum way to describe the varying spatial extent of time-
dependent task-related activations detected in fMRI data is still a question of debate. 

3. The least energetic ICA components, in the sense of their mean back-projected 
variance in the data space, particularly those with speckled spatial distributions, appear 
to be noise of unknown origin. It is not transparent to what extent a given component 
is physiological signal or identifiable artifact, and what is noise. Moreover, it is not 
very clear which domain of applicability would benefit from noise modeling included 
in an extension of the basic ICA model, since noise modeling is itself a rather complex 
and imprecise task. 

4. The assumption that the component maps are spatially stationary makes the method 
sensitive to the detection of movement artifact. Nevertheless, there is no 
straightforward correction method of suspected head movements. Moreover, the 
spatial independence of active brain areas is not perfect, and therefore the nature and 
functional significance of independent fMRI components must be validated by 
convergent physiological and behavioral evidence. 
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5. ICA method yields a linear decomposition of data into as independent as possible 
components, even if the underlying assumption of their independence is weak. That is, 
the estimates show up with no particular meaning or significance assigned by the ICA 
method. Apparently, the meaning of the estimated components is domain-specific 
dependent and not very clear. 

6. Model complexity selection is crucial in terms of allotting a meaning to estimated 
IC’s. Overestimating the dimensionality will introduce many spurious components and 
make difficult subsequent inference on their meaning. Underestimating the number of 
IC’s will possibly discard valuable information rendering the signal separation sub-
optimal. 

7. The ICA estimated components show up even when the assumption of their 
independence is weak and they are not endowed with any particular meaning. 
Therefore, methods for testing the statistical reliability of ICA component time 
courses and areas of activation need to be developed. 

 
V. RESULTS AND DISCUSSION 

 
5.1 Methods 
 
 

Our fMRI data originated from 24 randomly selected healthy subjects, males and females, 
performing 2 similar sessions of MR EPI scanning. The scanner was a 1.5 T Intera Philips 
Medical Systems, with SENSE both on and off. When on, the SENSE factors were 2 and 3, 
respectively. The acquisition matrix was 416464 ××  and the voxel size was 

4753753 ×× .. mm3 with 0.5 mm gap between slices. 120 volumes/session were acquired at 
52TR .=  seconds, and the 6 firstly acquired volumes were discarded as dummies, aiming to 

reach a steady-state regime. The data model complexity was set to 68 principal components 
by probabilistic PCA reduction [Beckman et al., 2000]. Data were processed by spatial Group 
ICA, which uses higher-order statistics to express the fMRI data as a sum of temporally-
modulated spatially-independent sources. The algorithm was an in-house implementation of 
the fast fixed-point ICA algorithm introduced by Hyvärinen and Oja [1997]. The 68 spatially 
estimated mean IC’s were ranked by spatial correlation within a pre-defined region of interest 
(ROI) of the brain responsible for auditory activity (i.e., Broadmann area 41 and 42). 
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Fig. 5 – Experimental paradigm for Go/NoGo task. 

 
 

We have previously analysed novel “Go/NoGo” tasks to examine neural substrates of 
response inhibition using fMRI [Mostofsky et al., 2003]. In the simplest task (Fig. 5), subjects 
saw every 1.5 seconds rapidly presented “spaceships” for 200 ms, and were instructed to press 
a response button “to rescue” the prevalent (82%) green spaceships (“Go”) but not the rare 
(12%) red spaceships (“NoGo”); inhibition of the pre-potent response was required. Each 
“spatial mission” lasted 4m 50s, and included 4 brief “rest” periods, apart form the initiating 
and ending periods of fixation. 
   
      
 
 
 
 
 
 
 
 
 
 
 
 (a) (b) 

 
Fig. 6 –  GLM analysis of Go (a) and NoGo (b) data. 
 

 

8822%%  GGoo  ((112233//rruunn))  1188%%  NNoo--ggoo  ((2277//rruunn))
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Fig. 7 –  Most energetic mean Group IC for both “Go” and “NoGo” tasks. 
 
 

Analysis using the General Linear Model as in SPM2, modeling successful responses as 
well as errors, revealed activity in contralateral sensorimotor cortex, ipsillateral cerebellum, 
and supplementary motor area (SMA) for “Go,” and in pre-SMA for “NoGo” (Fig. 6).  

Our analysis was focused on exploring the Go/NoGo data using spatial ICA, which, in 
contrast to GLM analysis, makes no specific prior hypotheses on the expected time courses of 
activation and aims to discover features reporting upon the organization of brain activity. 
Specifically, we searched to reveal whether the fMRI data from the visuo-motor “Go/NoGo” 
task reports on attentional modulation of auditory perception. Running Group sICA for all 24 
subjects clearly yielded 2 components best correlated with “Go” and “NoGo” regressor, 
respectively (Figs. 7 and 8).  
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Fig. 8 – Best correlated mean estimated component by Group ICA with “Go” temporal model, which is 
consistent with activity in the visual cortex. 
 
 

However, Group sICA also yielded a component primarily localized in auditory cortex, 
with a time course displaying transient deactivation upon initiation of the paradigm, and 
transient activation during each “rest” period (Fig. 9). This activity, while not predicted a 
priori within the GLM (univariate inferential) analysis and, therefore, not included in the 
experimental design matrix as a distinct regressor, is easily interpretable, post hoc, due to its 
obvious relationship to the timing of the paradigm events. Such activity predominantly 
localized to auditory regions, having the time course consistent with attentional modulation of 
auditory processing is likely due to the acoustically noisy scanner environment, namely to a 
subjective experience that the scanner’s acoustic noise appears “louder” when the participant 
is not concentrating on task performance. In our opinion, this is a typical example of a brain 
activation which, because it does not fit an a priori hypothesis about changes in brain activity 
during the task paradigm, was consequently omitted from classical univariate hypothesis-
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driven analysis like GLM. Our analysis pointed out that exploratory approaches like ICA can 
find activity in fMRI data beyond that predicted in advance – in this case, auditory activation 
during a “non-auditory” task. 

The key assumptions that ICA relays on are that the data set consists of some spatially 
independent components, which are linearly mixed and spatially fixed during each run. The 
number of components extracted can be reduced by initially preprocessing data with PCA. 
Since higher-order statistics are used to enforce stricter criteria for spatial independence 
between maps, better estimates for the consistently task-related components are obtained, 
which supports the assumption of spatial independence. However, spatial dependence 
between consistently task-related and transiently task-related components can be inferred by 
the changes in the transiently task-related maps when the consistently task-related component 
is removed. 
 
 

 
 
Fig. 9 – Group ICA separated mean component having the time course consistent with attentional modulation of 
auditory processing (Broadmann area 41 and 42). 
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VI. CONCLUSION 
 

In fMRI, the signal at each voxel consists of a mixture of underlying brain source signals 
and various uninteresting signals. As a multivariate data-driven statistical analysis method, 
the ICA model has the ability to discriminate activations that could not be predicted in 
advance of the experiment, such as transiently task-related ones. Thus ICA may allow 
straightforward analysis of more complex brain imaging experiments in which unpredictable 
changes in cognitive activation occur in parallel with changes in arousal or autonomic states 
for which the exact time courses of activation are not known, too. In this respect, the ICA 
approach is promising for investigations of patients with pathological conditions that may 
alter the latencies, amplitudes and brain distributions of their fMRI signals in unpredictable 
ways. Simulations indicated that the results of ICA are robust in the presence of noise in the 
data [McKeown et al., 1998b].  

Applying ICA to brain imaging augments the ongoing re-evaluation of inferential 
statistics in imaging neuroscience. Inferential approaches, based upon statistical models, allow 
insights from other fields to be adopted easily and powerfully. ICA does not appeal to a 
statistical model and no hypotheses are tested, although it might provide insights that allow 
better models to be designed. The limits of ICA usefulness for fMRI data analysis will 
ultimately depend on the match between the basic assumptions of the analysis method and the 
structural composition of fMRI data. 

Future techniques in neuroimaging will probably combine data- and hypothesis-driven 
analysis approaches by initially employing powerful data-driven methods to reveal the 
underlying nature of the signals and noise, such as stICA, and then testing hypotheses of 
interest within the previously determined more accurate context, such as multivariate linear 
models. 
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