12 research outputs found

    The Proliferation Enhancing Effects of Salidroside on Schwann Cells In Vitro

    Get PDF
    Derived from Rhodiola rosea L., which is a popular plant in Eastern Europe and Asia, salidroside has pharmacological properties including antiviral, anticancer, hepatoprotective, antidiabetic, and antioxidative effects. Recent studies show that salidroside has neurotrophic and neuroprotective effects. However, the effect of salidroside on Schwann cells (SCs) and the underlying mechanisms of the salidroside-induced neurotrophin secretion have seldom been studied. In this study, the effect of salidroside on the survival, proliferation, and gene expression of Schwann cells lineage (RSC96) was studied through the examinations of the cell viability, proliferation, morphology, and expression of neurotrophic factor related genes including BDNF, GDNF, and CDNF at 2, 4, and 6 days, respectively. These results showed that salidroside significantly enhanced survival and proliferation of SCs. The underlying mechanism might involve that salidroside affected SCs growth through the modulation of several neurotrophic factors including BDNF, GDNF, and CDNF. As for the concentration, 0.4 mM, 0.2 mM, and 0.1 mM of salidroside were recommended, especially 0.2 mM. This investigation indicates that salidroside is capable of enhancing SCs survival and function in vitro, which highlights the possibility that salidroside as a drug agent to promote nerve regeneration in cellular nerve scaffold through salidroside-induced neurotrophin secretion in SCs

    Research on the Application Value of Comfort Nursing Intervention in the Nursing of Senile Chronic Heart Failure

    Get PDF
    Objective: To analyze the application value of comfort nursing intervention in senile chronic heart failure nursing. Methods: The 120 heart failures discharged from our hospital in 2018 and 2019 were selected. The changes in nursing satisfaction, specialty nursing quality indicators and the incidence of pressure ulcers in hospitalized patients were compared and analyzed between the two groups. Results: The average satisfaction degree of the two groups was 97.48% and 97.22% respectively, and the difference between the groups was statistically significant (P<0.05). The correct rates of acute left heart failure in the two groups were 99.56% and 98.13%, and the difference between the groups was statistically significant (P<0.05), and two groups of patients with NYHA 3 heart failure or above intake control accuracy was 99.95% and 99.99%, and the difference between groups was statistically significant (P>0.05), and the incidence of pressure ulcer was 0.18‰ and 0, and there was no significant difference between the two groups. Conclusion: Comfort nursing intervention has achieved good nursing satisfaction and clinical effect in elderly patients with heart failure

    Generation of Flat Top Surface Plasmon Polariton Beams by Near Field Holography

    No full text
    Controlling the shape and trajectory of the surface plasmon polariton (SPP) beams is the key to all SPP-based applications. In this paper, a novel plasmonic device that can generate in-plane flat top SPP beams is designed by near field holography. The relationship between the transverse profile intensity of the generated flat top SPP beams and the structural parameters of the designed device is analyzed. The results of this paper can provide the possibility for further practical application utilizing flat top SPP beams

    Identification of potential prognostic small nucleolar RNA biomarkers for predicting overall survival in patients with sarcoma

    No full text
    Abstract Objective The main purpose of the present study is to screen prognostic small nucleolar RNA (snoRNA) markers using the RNA‐sequencing (RNA‐seq) dataset of The Cancer Genome Atlas (TCGA) sarcoma cohort. Methods The sarcoma RNA‐seq dataset comes from the TCGA cohort. A total of 257 sarcoma patients were included into the prognostic analysis. Multiple bioinformatics analysis methods for functional annotation of snoRNAs and screening of targeted drugs, including biological network gene ontology tool, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and connectivity map (CMap) are used. Results We had identified 15 snoRNAs that were significantly related to the prognosis of sarcoma and constructed a prognostic signature based on four prognostic snoRNA (U3, SNORA73B, SNORD46, and SNORA26) expression values. Functional annotation of these four snoRNAs by their co‐expression genes suggests that some of them were closely related to cell cycle‐related biological processes and tumor‐related signaling pathways, such as Wnt, mitogen‐activated protein kinase, target of rapamycin, and nuclear factor‐kappa B signaling pathway. GSEA of the risk score suggests that high risk score phenotype was significantly enriched in cell cycle‐related biological processes, protein SUMOylation, DNA replication, p53 binding, regulation of DNA repair, and DNA methylation, as well as Myc, Wnt, RB1, E2F, and TEL pathways. Then we also used the CMap online tool to screen five targeted drugs (rilmenidine, pizotifen, amiprilose, quipazine, and cinchonidine) for this risk score model in sarcoma. Conclusion Our study have identified 15 snoRNAs that may be serve as novel prognostic biomarkers for sarcoma, and constructed a prognostic signature based on four prognostic snoRNA expression values

    Defect-Induced Tunable Permittivity of Epsilon-Near-Zero in Indium Tin Oxide Thin Films

    No full text
    Defect-induced tunable permittivity of Epsilon-Near-Zero (ENZ) in indium tin oxide (ITO) thin films via annealing at different temperatures with mixed gases (98% Ar, 2% O2) was reported. Red-shift of λENZ (Epsilon-Near-Zero wavelength) from 1422 nm to 1995 nm in wavelength was observed. The modulation of permittivity is dominated by the transformation of plasma oscillation frequency and carrier concentration depending on Drude model, which was produced by the formation of structural defects and the reduction of oxygen vacancy defects during annealing. The evolution of defects can be inferred by means of X-ray diffraction (XRD), atomic force microscopy (AFM), and Raman spectroscopy. The optical bandgaps (Eg) were investigated to explain the existence of defect states. And the formation of structure defects and the electric field enhancement were further verified by finite-difference time domain (FDTD) simulation

    Polarization Controllable Device for Simultaneous Generation of Surface Plasmon Polariton Bessel-Like Beams and Bottle Beams

    No full text
    Realizing multiple beam shaping functionalities in a single plasmonic device is crucial for photonic integration. Both plasmonic Bessel-like beams and bottle beams have potential applications in nanophotonics, particularly in plasmonic based circuits, near field optical trapping, and micro manipulation. Thus, it is very interesting to find new approaches for simultaneous generation of surface plasmon polariton Bessel-like beams and bottle beams in a single photonic device. Two types of polarization-dependent devices, which consist of arrays of spatially distributed sub-wavelength rectangular slits, are designed. The array of slits are specially arranged to construct an X-shaped or an IXI-shaped array, namely X-shaped device and IXI-shaped devices, respectively. Under illumination of circularly polarized light, plasmonic zero-order and first-order Bessel-like beams can be simultaneously generated on both sides of X-shaped devices. Plasmonic Bessel-like beam and bottle beam can be simultaneously generated on both sides of IXI-shaped devices. By changing the handedness of circularly polarized light, for both X-shaped and IXI-shaped devices, the positions of the generated plasmonic beams on either side of device can be dynamically interchanged
    corecore