6 research outputs found

    MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity

    Get PDF
    Spheroids are three-dimensional cellular models with widespread basic and translational application across academia and industry. However, methodological transparency and guidelines for spheroid research have not yet been established. The MISpheroID Consortium developed a crowdsourcing knowledgebase that assembles the experimental parameters of 3,058 published spheroid-related experiments. Interrogation of this knowledgebase identified heterogeneity in the methodological setup of spheroids. Empirical evaluation and interlaboratory validation of selected variations in spheroid methodology revealed diverse impacts on spheroid metrics. To facilitate interpretation, stimulate transparency and increase awareness, the Consortium defines the MISpheroID string, a minimum set of experimental parameters required to report spheroid research. Thus, MISpheroID combines a valuable resource and a tool for three-dimensional cellular models to mine experimental parameters and to improve reproducibility

    MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity

    Get PDF
    Spheroids are three-dimensional cellular models with widespread basic and translational application across academia and industry. However, methodological transparency and guidelines for spheroid research have not yet been established. The MISpheroID Consortium developed a crowdsourcing knowledgebase that assembles the experimental parameters of 3,058 published spheroid-related experiments. Interrogation of this knowledgebase identified heterogeneity in the methodological setup of spheroids. Empirical evaluation and interlaboratory validation of selected variations in spheroid methodology revealed diverse impacts on spheroid metrics. To facilitate interpretation, stimulate transparency and increase awareness, the Consortium defines the MISpheroID string, a minimum set of experimental parameters required to report spheroid research. Thus, MISpheroID combines a valuable resource and a tool for three-dimensional cellular models to mine experimental parameters and to improve reproducibility. © 2021, The Author(s)

    Engineered Vasculature for Cancer Research and Regenerative Medicine

    No full text
    Engineered human tissues created by three-dimensional cell culture of human cells in a hydrogel are becoming emerging model systems for cancer drug discovery and regenerative medicine. Complex functional engineered tissues can also assist in the regeneration, repair, or replacement of human tissues. However, one of the main hurdles for tissue engineering, three-dimensional cell culture, and regenerative medicine is the capability of delivering nutrients and oxygen to cells through the vasculatures. Several studies have investigated different strategies to create a functional vascular system in engineered tissues and organ-on-a-chips. Engineered vasculatures have been used for the studies of angiogenesis, vasculogenesis, as well as drug and cell transports across the endothelium. Moreover, vascular engineering allows the creation of large functional vascular conduits for regenerative medicine purposes. However, there are still many challenges in the creation of vascularized tissue constructs and their biological applications. This review will summarize the latest efforts to create vasculatures and vascularized tissues for cancer research and regenerative medicine.</jats:p

    MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity

    Get PDF
    none51siSpheroids are three-dimensional cellular models with widespread basic and translational application across academia and industry. However, methodological transparency and guidelines for spheroid research have not yet been established. The MISpheroID Consortium developed a crowdsourcing knowledgebase that assembles the experimental parameters of 3,058 published spheroid-related experiments. Interrogation of this knowledgebase identified heterogeneity in the methodological setup of spheroids. Empirical evaluation and interlaboratory validation of selected variations in spheroid methodology revealed diverse impacts on spheroid metrics. To facilitate interpretation, stimulate transparency and increase awareness, the Consortium defines the MISpheroID string, a minimum set of experimental parameters required to report spheroid research. Thus, MISpheroID combines a valuable resource and a tool for three-dimensional cellular models to mine experimental parameters and to improve reproducibility.openPeirsman A.; Blondeel E.; Ahmed T.; Anckaert J.; Audenaert D.; Boterberg T.; Buzas K.; Carragher N.; Castellani G.; Castro F.; Dangles-Marie V.; Dawson J.; De Tullio P.; De Vlieghere E.; Dedeyne S.; Depypere H.; Diosdi A.; Dmitriev R.I.; Dolznig H.; Fischer S.; Gespach C.; Goossens V.; Heino J.; Hendrix A.; Horvath P.; Kunz-Schughart L.A.; Maes S.; Mangodt C.; Mestdagh P.; Michlikova S.; Oliveira M.J.; Pampaloni F.; Piccinini F.; Pinheiro C.; Rahn J.; Robbins S.M.; Siljamaki E.; Steigemann P.; Sys G.; Takayama S.; Tesei A.; Tulkens J.; Van Waeyenberge M.; Vandesompele J.; Wagemans G.; Weindorfer C.; Yigit N.; Zablowsky N.; Zanoni M.; Blondeel P.; De Wever O.Peirsman A.; Blondeel E.; Ahmed T.; Anckaert J.; Audenaert D.; Boterberg T.; Buzas K.; Carragher N.; Castellani G.; Castro F.; Dangles-Marie V.; Dawson J.; De Tullio P.; De Vlieghere E.; Dedeyne S.; Depypere H.; Diosdi A.; Dmitriev R.I.; Dolznig H.; Fischer S.; Gespach C.; Goossens V.; Heino J.; Hendrix A.; Horvath P.; Kunz-Schughart L.A.; Maes S.; Mangodt C.; Mestdagh P.; Michlikova S.; Oliveira M.J.; Pampaloni F.; Piccinini F.; Pinheiro C.; Rahn J.; Robbins S.M.; Siljamaki E.; Steigemann P.; Sys G.; Takayama S.; Tesei A.; Tulkens J.; Van Waeyenberge M.; Vandesompele J.; Wagemans G.; Weindorfer C.; Yigit N.; Zablowsky N.; Zanoni M.; Blondeel P.; De Wever O
    corecore