64 research outputs found
Properties of the amniotic membrane for potential use in tissue engineering
An important component of tissue engineering (TE) is the supporting matrix upon which cells and tissues grow, also known as the scaffold. Scaffolds must easily integrate with host tissue and provide an excellent environment for cell growth and differentiation. Most scaffold materials are naturally derived from mammalian tissues. The amniotic membrane (AM) is considered an important potential source for scaffolding material. The AM represents the innermost layer of the placenta and is composed of a single epithelial layer, a thick basement membrane and an avascular stroma. The special structure and biological viability of the AM allows it to be an ideal candidate for creating scaffolds used in TE. Epithelial cells derived from the AM have the advantages of stem cells, yet are a more suitable source of cells for TE than stem cells. The extracellular matrix components of the basement membrane of the AM create an almost native scaffold for cell seeding in TE. In addition, the AM has other biological properties important for TE, including anti-inflammatory, anti-microbial, anti-fibrosis, anti-scarring, as well as reasonable mechanical property and low immunogenicity. In this review, the various properties of the AM are discussed in light of their potential use for TE
A study on the different finite element approaches for laser cutting of aluminum alloy sheet
The effectiveness of finite element simulation techniques for laser cutting of 1.2-mm-thick aluminium sheets has been studied. Lagrangian and Arbitrary Lagrangian-Eulerian techniques were used to model and simulate laser cutting process. The reliability of finite element results were evaluated by general energy balance analysis and experimental results. Temperature and stress distribution along with heat-affected zone were predicted during the laser-induced process in line with experimental conditions under ABAQUS finite element code. Heat transfer analysis relying on thermal loading was employed to reach the best efficiency. By using field-emission scanning electron microscope, morphological, structural, and elemental changes in the cutting sections were analyzed along with the X-ray diffraction technique. Obtained stress and heat-affected zone are highly dependent on the element type as well as numerical method. Both numerical method, ALE and Lagrangian, are compared to each other in terms of power absorption, cut surface morphology, and cutting efficiency. The results show that ALE method is in good agreement with experimental data.
A study on the different finite element approaches for laser cutting of aluminum alloy sheet. Available from: https://www.researchgate.net/publication/317579195_A_study_on_the_different_finite_element_approaches_for_laser_cutting_of_aluminum_alloy_sheet [accessed Jul 3, 2017]
Immunological Compatibility Status of Placenta-Derived Stem Cells is Mediated by Scaffold 3D Structure
Placenta-derived amniotic epithelial cells (AECs), a great cell source for tissue engineering and stem cell therapy, are immunologically inert in their native state; however, immunological changes in these cells after culture and differentiation have challenged their applications. The aim of this study was to investigate the effect of 2D and 3D scaffolds on human lymphocyte antigens (HLA) expression by AECs. The effect of different preparation parameters including pre-freezing time and temperature was evaluated on 3D chitosan–gelatine scaffolds properties. Evaluation of MHC class I, HLA-DR and HLA-G expression in AECs after 7 d culture on 2D bed and 3D scaffold of chitosan–gelatine showed that culture of AECs on the 2D substrate up-regulated MHC class I and HLA-DR protein markers on AECs surface and down-regulated HLA-G protein. In contrast, 3D scaffold did not increase protein expression of MHC class I and HLA-DR. Moreover, HLA-G protein expression remained unchanged in 3D culture. These results confirm that 3D scaffold can remain AECs in their native immunological state and modification of physical properties of the scaffold is a key regulator of immunological markers at the gene and protein expression levels; a strategy which circumvents rejection challenge of amniotic stem cells to be translated into the clinic
Electrospun PGA/gelatin nanofibrous scaffolds and their potential application in vascular tissue engineering
Hadi Hajiali1, Shapour Shahgasempour1, M Reza Naimi-Jamal2, Habibullah Peirovi11Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences; 2Department of Chemistry, Iran University of Science and Technology, Tehran, IranBackground and methods: In this study, gelatin was blended with polyglycolic acid (PGA) at different ratios (0, 10, 30, and 50 wt%) and electrospun. The morphology and structure of the scaffolds were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The mechanical properties were also measured by the tensile test. Furthermore, for biocompatibility assessment, human umbilical vein endothelial cells and human umbilical artery smooth muscle cells were cultured on these scaffolds, and cell attachment and viability were evaluated.Results: PGA with 10 wt% gelatin enhanced the endothelial cells whilst PGA with 30 wt% gelatin increased smooth muscle cell adhesion, penetration, and viability compared with the other scaffold blends. Additionally, with the increase in gelatin content, the mechanical properties of the scaffolds were improved due to interaction between PGA and gelatin, as revealed by Fourier transform infrared spectroscopy and differential scanning calorimetry.Conclusion: Incorporation of gelatin improves the biological and mechanical properties of PGA, making promising scaffolds for vascular tissue engineering.Keywords: polyglycolic acid, gelatin, nanofiber, vascular tissue engineering, biocompatible scaffold&nbsp
Diagnostic value of early postoperative color doppler ultrasonography to predict vascular complications following liver transplantation
Introduction: Blood flow and hemodynamic of the transplanted liver has an important predictive role in the survival of the patients. We aimed to determine the diagnostic value of early post-operative color doppler ultrasonography (CDU) for detecting vascular complications following liver transplantation at our center.
Materials and Methods: In this prospective study, consecutive patients who underwent deceased donor liver transplantation between March 2016 and March 2017 were enrolled. Color Doppler ultrasonography was performed within the first week following surgery. The follow-up CDU was performed after 1 year from the liver transplantation. Using the findings of follow up CDU as the reference standard, we calculated values of the capability of the initial CDU in the diagnosis of the hepatic artery, portal vein and intrahepatic veins' stenosis, including the level of agreement, sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy.
Results: The data of 50 patients were analyzed in this study (mean age=38.9±13.2 years, 26 [52%] men). In the initial ultrasonography, 16 cases had hepatic artery stenosis, 4 cases had portal vein stenosis and 4 patients had IVC stenosis. The diagnostic value of the early postoperative CDU for hepatic artery stenosis, portal vein stenosis, and other vascular stenosis were 71.9, 96.0, and 62.0, respectively.
Conclusion: Early post-operative CDU is a safe and feasible method that can detect the development of hepatic artery or portal vein stenosis in liver transplant recipients with a low to moderate positive predictive value and a high negative predictive value.
 
The Antibacterial Effect of Low Temperature Stored Amnion on Growth of Escherichia Coli, Staphylococcus Aureus and Pseudomonas Aeruginosa
BACKGROUND AND OBJECTIVE: Amniotic membrane (AM) has a lot of applied properties like anti-bacterial characteristic mediated by peptides such as elafin. Because of limitations in use of freshly prepared tissue, there are various methods for long-term preservation of amniotic membrane. This study was conducted to determine the effect of cryopreservation, as one of the common methods of preservation of amniotic membrane, on its antibacterial property against the growth of commonly occurring bacteria in the clinic.
METHODS: In this experimental study, the effect of fresh AM (from elective Cesarean) and cryopreserved (by 10% DMSO) AM on the growth of three standard bacterial strains including Escherichia coli ATCC 25922, Staphylococcus aureus, Pseudomonas aeruginosa and two clinical isolated strains of E.coli were evaluated using disk diffusion test. In this method, pieces of fresh or cryopreserved AM was placed in the culture plate after bacterial culturing. After incubation, the number of plates with inhibition zone and amount of inhibition zone were measured. The amount of elafin was measured in AM samples using ELISA.
RESULTS: Fresh AM inhibit the growth of Pseudomonas aeruginosa and two clinical isolated strains of E.coli. However, it has no effect on the growth of standard strain of Escherichia coli and Staphylococcus aureus strain. There is no difference in the number of plates including inhibition zone between fresh and cryopreserved AM. The amount of elafin decreased significantly in cryopreserved AM (p<0.01).
CONCLUSION: The results of this study showed that the anti-bacterial property of the AM depends on bacterial species. In addition, the cryopreservation process maintains anti-bacterial properties of amniotic stem cells
Evaluation of the neuroprotective effects of electromagnetic fields and coenzyme Q 10 on hippocampal injury in mouse
Electromagnetic fields (EMFs) are reported to interfere with chemical reactions involving free radical production. Coenzyme Q 10 (CoQ10) is a strong antioxidant with some neuroprotective activities. The purpose of this study was to examine and compare the neuroprotective effects of EMF and CoQ10 in a mouse model of hippocampal injury. Hippocampal injury was induced in mature female mice (25–30 g), using an intraperitoneal injection of trimethyltin hydroxide (TMT; 2.5 mg/kg). The experimental groups were exposed to EMF at a frequency of 50 Hz and intensity of 5.9 mT for 7 hr daily over 1 week or treated with CoQ10 (10 mg/kg) for 2 weeks following TMT injection. A Morris water maze apparatus was used to assess learning and spatial memory. Nissl staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) tests were also performed for the histopathological analysis of the hippocampus. Antiapoptotic genes were studied, using the Western blot technique. The water maze test showed memory improvement following treatment with CoQ10 and coadministration of CoQ10 + EMF. The Nissl staining and TUNEL tests indicated a decline in necrotic and apoptotic cell count following treatment with CoQ10 and coadministration of CoQ10 + EMF. The Western blot study indicated the upregulation of antiapoptotic genes in treatment with CoQ10, as well as coadministration. Also, treatment with EMF had no significant effects on reducing damage induced by TMT in the hippocampus. According to the results, EMF had no significant neuroprotective effects in comparison with CoQ10 on hippocampal injury in mice. Nevertheless, coadministration of EMF and CoQ10 could improve the neuroprotective effects of CoQ1
Feasibility investigation of direct laser cutting process of metal foam with high pore density
To avoid damage to the pore structure of metal foam, a laser cutting process for efficiently and directly cutting metal foam into regular shapes is proposed. After analyzing the proposed laser cutting process, its effects when applied to three different types of metal material (copper, ferroalloy, and nickel) and two levels of pore density, namely 90 and 110 pores per inch (PPI), were investigated. The results show that metal foam with a good surface quality can be obtained without damaging the pore structure by using the proposed laser cutting process. Of the three metal types considered, the highest material removal rate (MRR) and material oxidation rate (MOR) were observed for ferroalloy foam. Of the two pore densities, metal foam of 90 PPI showed a larger material removal rate than metal foam of 110 PPI. The MRR and MOR increased with an increase in the laser output power and decrease in the scanning speed. Using a central composite experimental design method, optimized processing parameters of 26 W laser output power and 475 mm/s scanning speed were adopted to cut the metal foam with a high pore density
- …