304 research outputs found

    Atomistic spin dynamics of the CuMn spin glass alloy

    Full text link
    We demonstrate the use of Langevin spin dynamics for studying dynamical properties of an archetypical spin glass system. Simulations are performed on CuMn (20% Mn) where we study the relaxation that follows a sudden quench of the system to the low temperature phase. The system is modeled by a Heisenberg Hamiltonian where the Heisenberg interaction parameters are calculated by means of first-principles density functional theory. Simulations are performed by numerically solving the Langevin equations of motion for the atomic spins. It is shown that dynamics is governed, to a large degree, by the damping parameter in the equations of motion and the system size. For large damping and large system sizes we observe the typical aging regime.Comment: 18 pages, 9 figure

    Existence and approximation of Hunt processes associated with generalized Dirichlet forms

    Full text link
    We show that any strictly quasi-regular generalized Dirichlet form that satisfies the mild structural condition D3 is associated to a Hunt process, and that the associated Hunt process can be approximated by a sequence of multivariate Poisson processes. This also gives a new proof for the existence of a Hunt process associated to a strictly quasi-regular generalized Dirichlet form that satisfies SD3 and extends all previous results.Comment: Revised, shortened and improved versio

    Protein-RNA linkage and post-translational modifications of two sobemovirus VPgs

    Get PDF
    Sobemoviruses possess a viral genome-linked protein (VPg) attached to the 5' end of viral RNA. VPg is processed from the viral polyprotein. In the current study, Cocksfoot mottle virus (CfMV) and Rice yellow mottle virus (RYMV) VPgs were purified from virions and analysed by mass spectrometry. The cleavage sites in the polyprotein and thereof the termini of VPg were experimentally proven. The lengths of the mature VPgs were determined to be 78 and 79 aa residues, respectively. The amino acid residues covalently linked to RNA in the two VPgs were, surprisingly, not conserved; it is a tyrosine at position 5 of CfMV VPg and serine at position 1 of RYMV VPg. Phosphorylations were identified in CfMV and RYMV VPgs with two positionally similar locations T20/S14 and S71/S72, respectively. RYMV VPg contains an additional phosphorylation site at S41

    A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC-NBS-LRR

    Get PDF
    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)Fire blight is the most important bacterial disease in apple (Malus ×  domestica) and pear (Pyrus communis) production. Today, the causal bacterium Erwinia amylovora is present in many apple- and pear-growing areas. We investigated the natural resistance of the wild apple Malus ×  robusta 5 against E. amylovora, previously mapped to linkage group 3. With a fine-mapping approach on a population of 2,133 individuals followed by phenotyping of the recombinants from the region of interest, we developed flanking markers useful for marker-assisted selection. Open reading frames were predicted on the sequence of a BAC spanning the resistance locus. One open reading frame coded for a protein belonging to the NBS–LRR family. The in silico investigation of the structure of the candidate resistance gene against fire blight of M. ×  robusta 5, FB_MR5, led us hypothesize the presence of a coiled-coil region followed by an NBS and an LRR-like structure with the consensus ‘LxxLx[IL]xxCxxLxxL’. The function of FB_MR5 was predicted in agreement with the decoy/guard model, that FB_MR5 monitors the transcribed RIN4_MR5, a homolog of RIN4 of Arabidopsis thaliana that could interact with the previously described effector AvrRpt2EA of E. amylovora

    Cultivo e uso de abĂłboras ornamentais.

    Get PDF
    bitstream/item/78751/1/Documento-353.pd

    Optoelectronic Reservoir Computing

    Get PDF
    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an opto-electronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations.Comment: Contains main paper and two Supplementary Material

    Multiple micro-optical atom traps with a spherically aberrated laser beam

    Full text link
    We report on the loading of atoms contained in a magneto-optic trap into multiple optical traps formed within the focused beam of a CO_{2} laser. We show that under certain circumstances it is possible to create a linear array of dipole traps with well separated maxima. This is achieved by focusing the laser beam through lenses uncorrected for spherical aberration. We demonstrate that the separation between the micro-traps can be varied, a property which may be useful in experiments which require the creation of entanglement between atoms in different micro-traps. We suggest other experiments where an array of these traps could be useful.Comment: 10 pages, 3 figure
    • 

    corecore