4 research outputs found
Numerical Simulation of Copper-Aluminum Composite Plate Casting and Rolling Process and Composite Mechanism
This paper uses ANSYS Workbench platform to simulate the casting and rolling composite process, taking the horizontal type casting and rolling machine as the research object, and conducts the numerical simulation study of copper-aluminum composite solid-liquid casting and rolling heat-flow coupling, mainly to study different walking speed, aluminum pouring temperature, casting and rolling zone length, heat transfer coefficient on the temperature field, liquid phase rate influence law, and use it as a theoretical guide for copper-aluminum solid-liquid casting. The experiments of copper-aluminum solid-liquid casting-rolling composite were carried out to optimize the process parameters and to verify the experiments, so as to prepare a well-bonded copper-aluminum composite plate. The composite mechanism in the preparation of copper-aluminum composite plate was analyzed, and it was clarified that the interfacial layer was formed through four stages: contact between copper and aluminum surfaces, contact surface activation, mutual diffusion of copper and aluminum atoms, and reaction diffusion
In-Situ Observation and Analysis of the Evolution of Copper Aluminum Composite Interface
To study the micromorphology and dynamic evolution law of copper aluminum composite interface evolution, ultra-high temperature laser Confocal microscopy (CLSM) was used to observe and analyze the evolution of copper aluminum interface in situ, and then SEM, EDS and other advanced material analysis methods were used to observe the micromorphology of the composite layer, and study the composition of the interface layer and the formation process of the copper aluminum composite interface. The results indicate that the formation of the copper aluminum composite interface layer is mainly related to the mutual diffusion of copper aluminum atoms and the interface reaction between copper and aluminum. The bonding of the copper aluminum composite interface is mainly related to the melting of the metal surface of the interface layer and the mutual diffusion of copper aluminum atoms, which is the main mechanism of the copper aluminum composite interface bonding. The intermetallic compound is mainly Al2Cu. In situ, observation of copper aluminum composite interface shows that there is a clear and relatively flat boundary between copper and the interface layer, while the boundary between aluminum and the interface layer is not straight, which is caused by the difference in thermal expansion coefficient, Lattice constant and hardness between intermetallic compounds and matrix and between intermetallic compounds. At the same time, it was found that there is a certain relationship between the visual changes of the copper aluminum composite interface image and reaction-diffusion migration during in-situ observation using a confocal laser scanning high-temperature microscope. Moreover, under no pressure, the oxide layer and interface inclusions can seriously affect the interface bonding