60 research outputs found

    Morphology of supported polymer electrolyte ultra-thin films: a numerical study

    Full text link
    Morphology of polymer electrolytes membranes (PEM), e.g., Nafion, inside PEM fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be found as an ultra-thin film, coating the catalyst and the catalyst support surfaces. The impact of the hydrophilic/hydrophobic character of these surfaces on the structural formation of the films has not been sufficiently explored yet. Here, we report about Molecular Dynamics simulation investigation of the substrate effects on the ionomer ultra-thin film morphology at different hydration levels. We use a mean-field-like model we introduced in previous publications for the interaction of the hydrated Nafion ionomer with a substrate, characterized by a tunable degree of hydrophilicity. We show that the affinity of the substrate with water plays a crucial role in the molecular rearrangement of the ionomer film, resulting in completely different morphologies. Detailed structural description in different regions of the film shows evidences of strongly heterogeneous behavior. A qualitative discussion of the implications of our observations on the PEMFC catalyst layer performance is finally proposed

    Migration analysis, antioxidant, and mechanical characterization of polypropylene-based active food packaging films loaded with BHA, BHT, and TBHQ

    No full text
    Polypropylene (PP) based active composite films were prepared by adding butylated hydroxy anisole (BHA), butylated hydroxytoluene (BHT), and tertiary butylated hydroquinone (TBHQ) antioxidants using the extrusion molding process. All concentrations of BHT, 2% to 3% BHA, and 3% TBHQ significantly increased the tensile strength (TS) of the composite films compared with control films. Increasing antioxidant concentration decreased TS values for BHT films, whereas an opposite trend was observed for BHA and TBHQ films. BHA at  2%, and TBHQ at all added concentrations significantly reduced elongation at break (Eb) of the composite films compared to control films. Water vapor permeability (WVP) of 1% BHT film was not significantly different from control. However, other antioxidants especially at increased concentrations significantly increased WVP values. TBHQ films with 300% to 662% increase had the highest WVP and BHT films with 5% to 81% increase had the lowest WVP among composite films. All three antioxidants had a negative effect on the transparency of the films; however the effect of BHA at higher concentrations was greater. The antioxidants did not change the color attributes of the films. Films containing all antioxidants showed 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity, which increased with increase in their concentration, especially for those containing 3 wt.% BHT and TBHQ. Overall, incorporating BHA and BHT into a PP matrix improved mechanical, barrier, antioxidant properties, and film appearance and consequently were proposed for the development of antioxidant active PP films. TBHQ film is not recommended for food packaging because of its weak mechanical properties (lower Eb and TS values, higher WVP, and greater migration)

    Potential application of nanovesicles (niosomes and liposomes) for fortification of functional beverages with Isoleucine-Proline-Proline: a comparative study with central composite design approach

    No full text
    In this study, the efficiency and practical utilization feasibility of niosomal and liposomal nanovesicles loading Isoleucine-Proline-Proline (IPP)as suitable ingredients of functional beverages were evaluated. Vesicles were tailored by different preparation methods using phospholipid and non-ionic surfactants. The optimization process was performed by central composite design approach. The results of Fourier transform infrared spectroscopy demonstrated the compatibility of IPP with the vesicles. The phospholipidic nanovesicles, produced by modified ethanol injection-microchannel technique, were smaller with lower polydispersity index than non-ionic surfactant vesicles developed by the method of thin film hydration and probe sonication. However, niosomal model functional beverage exhibited more proper palatability, biological activity and physicochemical properties during long-term storage than liposomal one. Moreover, niosomes exhibited more sustained release behaviour in simulated blood fluid than liposomes. These findings are of great importance for design and development of the functional foods containing IPP

    Pulsed Electric Current Sintering of TiB2-based Ceramics Using Nitride Additives

    Full text link
    In this research, various types of nitride additives were incorporated into titanium diboride attaining dense TiB2-based ceramics by field-assisted sintering technique. The addition of different types of nitride additives, namely Si3N4, BN, AlN, and TiN, significantly improved the sinterability of TiB2, achieving near fully dense ceramics. The X-ray diffraction analysis and microstructural evaluation confirmed the presence of the h-BN compound in all specimens. In the TiB2-Si3N4 ceramic, Si3N4 additive reacted with B2O3 oxide, in-situ generating h-BN, and SiO2 phases. Although the h-BN phase was produced in the TiB2-AlN specimen, the main proportion of AlN remained in the sample as an unreacted ex-situ phase. In terms of the TiB2-TiN ceramic, some of the nitrogen and boron atoms could leave the TiN and TiB2 crystalline structures, contributing to the in-situ formation of h-BN
    corecore