72 research outputs found

    A first genetic portrait of synaptonemal complex variation.

    Get PDF
    The synaptonemal complex (SC) is a proteinaceous scaffold required for synapsis and recombination between homologous chromosomes during meiosis. Although the SC has been linked to differences in genome-wide crossover rates, the genetic basis of standing variation in SC structure remains unknown. To investigate the possibility that recombination evolves through changes to the SC, we characterized the genetic architecture of SC divergence on two evolutionary timescales. Applying a novel digital image analysis technique to spermatocyte spreads, we measured total SC length in 9,532 spermatocytes from recombinant offspring of wild-derived mouse strains with differences in this fundamental meiotic trait. Using this large dataset, we identified the first known genomic regions involved in the evolution of SC length. Distinct loci affect total SC length divergence between and within subspecies, with the X chromosome contributing to both. Joint genetic analysis of MLH1 foci-immunofluorescent markers of crossovers-from the same spermatocytes revealed that two of the identified loci also confer differences in the genome-wide recombination rate. Causal mediation analysis suggested that one pleiotropic locus acts early in meiosis to designate crossovers prior to SC assembly, whereas a second locus primarily shapes crossover number through its effect on SC length. One genomic interval shapes the relationship between SC length and recombination rate, likely modulating the strength of crossover interference. Our findings pinpoint SC formation as a key step in the evolution of recombination and demonstrate the power of genetic mapping on standing variation in the context of the recombination pathway

    C-Silicon-based metasurfaces for aperture-robust spectrometer/imaging with angle integration

    Full text link
    Compared with conventional grating-based spectrometers, reconstructive spectrometers based on spectrally engineered filtering have the advantage of miniaturization because of the less demand for dispersive optics and free propagation space. However, available reconstructive spectrometers fail to balance the performance on operational bandwidth, spectral diversity and angular stability. In this work, we proposed a compact silicon metasurfaces based spectrometer/camera. After angle integration, the spectral response of the system is robust to angle/aperture within a wide working bandwidth from 400nm to 800nm. It is experimentally demonstrated that the proposed method could maintain the spectral consistency from F/1.8 to F/4 (The corresponding angle of incident light ranges from 7{\deg} to 16{\deg}) and the incident hyperspectral signal could be accurately reconstructed with a fidelity exceeding 99%. Additionally, a spectral imaging system with 400x400 pixels is also established in this work. The accurate reconstructed hyperspectral image indicates that the proposed aperture-robust spectrometer has the potential to be extended as a high-resolution broadband hyperspectral camera

    High-speed Coherent Optical Communication with Isolator-free Heterogeneous Si/III-V Lasers

    Get PDF
    Coherent optical communication is considered as an indispensable solution to the ever-increasing demand for higher data rates. To reduce the cost and form factor of coherent transceivers, full integration of photonic devices including lasers, modulators, amplifiers, photodetectors, and other components is necessary. However, as fabricating optical isolators on chip remains extremely challenging, optical feedback, which can degrade the coherence of semiconductor lasers, becomes the main obstacle, thwarting large-scale photonic integration. An appealing solution to such a problem is to use semiconductor lasers with intrinsic insensitivity to optical feedback as the integrated light sources. The heterogenous Si/III-V lasers, with their built-in high-Q resonators, are expected to possess a robustness to optical feedback which exceeds by several orders of magnitude compared to commercial III-V distributed feedback (DFB) lasers, which will be validated here. We present data showing that the heterogeneous Si/III-V lasers can preserve their phase coherence under much larger optical feedback and therefore function without severe degradation in isolator-free coherent optical communication systems

    Mode-division-multiplexing of multiple Bessel-Gaussian beams carrying orbital-angular-momentum for obstruction-tolerant free-space optical and millimetre-wave communication links

    Get PDF
    We experimentally investigate the potential of using ‘self-healing’ Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively

    Experimental characterization of a 400  Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m

    Get PDF
    We experimentally demonstrate and characterize the performance of a 400-Gbit/s orbital angular momentum (OAM) multiplexed free-space optical link over 120- meters on the roof of a building. Four OAM beams, each carrying a 100-Gbit/s QPSK channel are multiplexed and transmitted. We investigate the influence of channel impairments on the received power, inter-modal crosstalk among channels, and system power penalties. Without laser tracking and compensation systems, the measured received power and crosstalk among OAM channels fluctuate by 4.5 dB and 5 dB, respectively, over 180 seconds. For a beam displacement of 2 mm that corresponds to a pointing error less than 16.7 μrad, the link bit-error-rates are below the forward error correction threshold of 3.8×10-3 for all channels. Both experimental and simulation results show that power penalties increase rapidly when the displacement increases

    Orbital-angular-momentum-multiplexed free-space optical communication link using transmitter lenses

    Get PDF
    In this paper, we explore the potential benefits and limitations of using transmitter lenses in an orbital-angular-momentum (OAM)-multiplexed free-space optical (FSO) communication link. Both simulation and experimental results indicate that within certain transmission distances, using lenses at the transmitter to focus OAM beams could reduce power loss in OAM-based FSO links and that this improvement might be more significant for higher-order OAM beams. Moreover, the use of transmitter lenses could enhance system tolerance to angular error between transmitter and receiver, but they might degrade tolerance to lateral displacement

    In Vivo Near-Infrared Imaging of Fibrin Deposition in Thromboembolic Stroke in Mice

    Get PDF
    imaging of activated factor XIII (FXIIIa), an important mediator of thrombosis or fibrinolytic resistance. The present study was to investigate the fibrin deposition in a thromboembolic stroke mice model by FXIIIa–targeted near-infrared fluorescence (NIRF) imaging., which were correlated with histology after animal euthanasia. NIRF images and lesion volume.Non-invasive detection of fibrin deposition in ischemic mouse brain using NIRF imaging is feasible and this technique may provide an in vivo experimental tool in studying the role of fibrin in stroke

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • …
    corecore