11 research outputs found

    Preparing clinical-grade myeloid dendritic cells by electroporation-mediated transfection of in vitro amplified tumor-derived mRNA and safety testing in stage IV malignant melanoma

    Get PDF
    BACKGROUND: Dendritic cells (DCs) have been used as vaccines in clinical trials of immunotherapy of cancer and other diseases. Nonetheless, progress towards the use of DCs in the clinic has been slow due in part to the absence of standard methods for DC preparation and exposure to disease-associated antigens. Because different ex vivo exposure methods can affect DC phenotype and function differently, we studied whether electroporation-mediated transfection (electrotransfection) of myeloid DCs with in vitro expanded RNA isolated from tumor tissue might be feasible as a standard physical method in the preparation of clinical-grade DC vaccines. METHODS: We prepared immature DCs (IDCs) from CD14(+ )cells isolated from leukapheresis products and extracted total RNA from freshly resected melanoma tissue. We reversely transcribed the RNA while attaching a T7 promoter to the products that we subsequently amplified by PCR. We transcribed the amplified cDNA in vitro and introduced the expanded RNA into IDCs by electroporation followed by DC maturation and cryopreservation. Isolated and expanded mRNA was analyzed for the presence of melanoma-associated tumor antigens gp100, tyrosinase or MART1. To test product safety, we injected five million DCs subcutaneously at three-week intervals for up to four injections into six patients suffering from stage IV malignant melanoma. RESULTS: Three preparations contained all three transcripts, one isolate contained tyrosinase and gp100 and one contained none. Electrotransfection of DCs did not affect viability and phenotype of fresh mature DCs. However, post-thaw viability was lower (69 ± 12 percent) in comparison to non-electroporated cells (82 ± 12 percent; p = 0.001). No patient exhibited grade 3 or 4 toxicity upon DC injections. CONCLUSION: Standardized preparation of viable clinical-grade DCs transfected with tumor-derived and in vitro amplified mRNA is feasible and their administration is safe

    Tumor Microenvironment CD14<sup>+</sup> Cells Correlate with Poor Overall Survival in Patients with Early-Stage Lung Adenocarcinoma

    No full text
    Patients with early-stage lung adenocarcinoma have a high risk of recurrent or metastatic disease despite undergoing curative intent therapy. We hypothesized that increased CD14+ cells within the tumor microenvironment (TME) could stratify patient outcomes. Immunohistochemistry for CD14 was performed on 189 specimens from patients with lung adenocarcinoma who underwent curative intent surgery. Outcomes and associations with clinical and pathologic variables were determined. In vitro studies utilized a coculture system to model the lung cancer TME containing CD14+ cells. Patients with high levels of TME CD14+ cells experienced a median overall survival of 5.5 years compared with 8.3 and 10.7 years for those with moderate or low CD14 levels, respectively (p + cell tumor infiltration was associated with a higher stage at diagnosis and more positive lymph nodes at the time of surgery. This prognostic capacity remained even for patients with early-stage disease. Using an in vitro model system, we found that CD14+ cells reduced chemotherapy-induced cancer cell death. These data suggest that CD14+ cells are a biomarker for poor prognosis in early-stage lung adenocarcinoma and may promote tumor survival. CD14+ cell integration into the lung cancer TME can occur early in the disease and may be a promising new therapeutic avenue

    Immunosuppressive CD14\u3csup\u3e+\u3c/sup\u3eHLA-DR\u3csup\u3eLow/-\u3c/sup\u3e Monocytes in Prostate Cancer

    No full text
    OBJECTIVE. To determine if the levels of circulating myeloid-derived suppressor cells increase with progression of prostate cancer (PCa); to determine if such cells could contribute to the relative inefficiency of PCa immunotherapy. MATERIALS AND METHODS. We analyzed peripheral blood mononuclear cells isolated from untreated PCa patients (uPCa; N=18; mean age±SD: 72.1± 6.9 years), tPCa (N = 22; 72.8 ± 9.8 years) and age matched controls (AMC; N = 12; 68.8 ± 7.5 years). We quantified surface marker phenotype, differentiation potential, effects on T cell proliferation and intracellular cytokines. RESULTS. We observed an unexpectedly high percentage of a type of myeloid-derived suppressor cells, CD14+HLA-DR low/- monocytes, in tPCa (30.7±15.0% of CD14+ cells) relative to AMC (4.1+6.5%, P\u3c0.0001) and uPCa (10.6 ± 14.3%, P = 0.0001). The levels of CD14+ HLA-DR low/- cells were significantly correlated with circulating PSA levels and treatment with LHRH-agonist leuprolide in combination with either an antiandrogen or dexamethasone. Monocytes from tPCa inhibited autologous T cell proliferation statistically significantly more effectively than AMC monocytes and were defective in their ability to differentiate into phenotypically mature dendritic cells. Isolated CD14+HLA-DRlow/- cells expressed higher levels of intracellular interleukin-10 and suppressed T cell proliferation more effectively than isolated CD14+HLA-DR+ cells. CONCLUSIONS. This is the first report of CD14+ cells exhibiting reduced expression of HLADRmolecules in PCa patients. These cells suppress immune cell function in vitro and, plausibly, in vivo, a finding that must be factored into the design of immunotherapy protocols for PCa patients

    Immunosuppressive CD14+HLA-DRlow/− monocytes in B-cell non-Hodgkin lymphoma

    No full text
    Immunosuppression is a known risk factor for B-cell non-Hodgkin lymphoma (NHL), yet mechanisms of tumor-associated immunosuppression remain to be fully characterized. We examined the immunophenotype of 40 NHL patients and 27 age-matched healthy volunteers to better understand systemic immune suppression. NHL peripheral blood mononuclear cells had significantly decreased interferon-γ production and proliferation. This suppression was not the result of regulatory T cells, interleukin-6 or interleukin-10, as these factors were not different between NHL and healthy volunteers (controls). We were able to restore T-cell proliferation by removing NHL monocytes, suggesting that these monocytes are suppressive. This suppression was mediated in part through arginine metabolism as exogenous arginine supplementation partially overcame monocytes' suppression of T-cell proliferation in vitro and NHL patients had elevated arginase I in their plasma. NHL monocytes had impaired STAT1 phosphorylation and interferon-α production to CpG stimulation and a dendritic cell differentiation deficiency. Further studies demonstrated that monocytes from NHL patients had decreased HLA-DR and Tumor necrosis factor-α receptor II (CD120b) expression compared with controls (CD14+HLA-DRlow/−CD120blow). Patients with increased ratios of CD14+HLA-DRlow/− monocytes had more aggressive disease and suppressed immune functions. In summary, we report that CD14+HLA-DRlow/− monocytes are a major and multifactorial contributor to systemic immunosuppression in NHL

    Systemic immune suppression in glioblastoma: the interplay between CD14+HLA-DRlo/neg monocytes, tumor factors, and dexamethasone

    No full text
    Patients with glioblastoma (GBM) exhibit profound systemic immune defects that affect the success of conventional and immune-based treatments. A better understanding of the contribution of the tumor and/or therapy on systemic immune suppression is necessary for improved therapies, to monitor negative effects of novel treatments, to improve patient outcomes, and to increase understanding of this complex system. To characterize the immune profile of GBM patients, we phenotyped peripheral blood and compared these to normal donors. In doing so, we identified changes in systemic immunity associated with both the tumor and dexamethasone treated tumor bearing patients. In particular, dexamethasone exacerbated tumor associated lymphopenia primarily in the T cell compartment. We have also identified unique tumor and dexamethasone dependent altered monocyte phenotypes. The major population of altered monocytes (CD14+HLA-DRlo/neg) had a phenotype distinct from classical myeloid suppressor cells. These cells inhibited T cell proliferation, were unable to fully differentiate into mature dendritic cells, were associated with dexamethasone-mediated changes in CCL2 levels, and could be re-created in vitro using tumor supernatants. We provide evidence that tumors express high levels of CCL2, can contain high numbers of CD14+ cells, that tumor supernatants can transform CD14+HLA-DR+ cells into CD14+HLA-DRlo/neg immune suppressors, and that dexamethasone reduces CCL2 in vitro and is correlated with reduction of CCL2 in vivo. Consequently, we have developed a model for tumor mediated systemic immune suppression via recruitment and transformation of CD14+ cells
    corecore