1,033 research outputs found

    Vortex Structure Around a Magnetic Dot in Planar Superconductors

    Full text link
    The problem of the giant vortex state around a magnetic dot which is embedded in a superconducting film is investigated. The full non-linear, self-consistent Ginzburg-Landau equations are solved numerically in order to calculate the free energy, the order parameter of the host superconductor, the internal magnetic field due to the supercurrents, the corresponding current density, the magnetization probed in the vicinity of the dot, and the normal electron density as a function of the various parameters of the system. We find that, as we increase the magnetic moment of the dot, higher flux quanta vortex states become energetically more favorable, as they can better compete with the external magnetic field via the Meissner effect. In addition to that, they progressively become closer to each other in energy with direct experimental consequences, i.e. physical quantities like magnetization may fluctuate when measured, for example, as a function of a uniform external magnetic field.Comment: text 21 pages (REVTEX), 8 figures available upon reques

    Magnetic field dependence of the energy of negatively charged excitons in semiconductor quantum wells

    Full text link
    A variational calculation of the spin-singlet and spin-triplet state of a negatively charged exciton (trion) confined to a single quantum well and in the presence of a perpendicular magnetic field is presented. We calculated the probability density and the pair correlation function of the singlet and triplet trion states. The dependence of the energy levels and of the binding energy on the well width and on the magnetic field strength was investigated. We compared our results with the available experimental data on GaAs/AlGaAs quantum wells and find that in the low magnetic field region (B<18 T) the observed transition are those of the singlet and the dark triplet trion (with angular momentum Lz=1L_z=-1), while for high magnetic fields (B>25 T) the dark trion becomes optically inactive and possibly a transition to a bright triplet trion (angular momentum Lz=0L_z=0) state is observed.Comment: 9 pages, 10 figures submitted to Phys. Rev.

    Magnetic Quantum Dot: A Magnetic Transmission Barrier and Resonator

    Full text link
    We study the ballistic edge-channel transport in quantum wires with a magnetic quantum dot, which is formed by two different magnetic fields B^* and B_0 inside and outside the dot, respectively. We find that the electron states located near the dot and the scattering of edge channels by the dot strongly depend on whether B^* is parallel or antiparallel to B_0. For parallel fields, two-terminal conductance as a function of channel energy is quantized except for resonances, while, for antiparallel fields, it is not quantized and all channels can be completely reflected in some energy ranges. All these features are attributed to the characteristic magnetic confinements caused by nonuniform fields.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    Free carrier effects in gallium nitride epilayers: the valence band dispersion

    Full text link
    The dispersion of the A-valence-band in GaN has been deduced from the observation of high-index magneto-excitonic states in polarised interband magneto-reflectivity and is found to be strongly non-parabolic with a mass in the range 1.2-1.8 m_{e}. It matches the theory of Kim et al. [Phys. Rev. B 56, 7363 (1997)] extremely well, which also gives a strong k-dependent A-valence-band mass. A strong phonon coupling leads to quenching of the observed transitions at an LO-phonon energy above the band gap and a strong non-parabolicity. The valence band was deduced from subtracting from the reduced dispersion the electron contribution with a model that includes a full treatment of the electron-phonon interaction.Comment: Revtex, 4 pages, 5 figure

    Tunable Lyapunov exponent in inverse magnetic billiards

    Get PDF
    The stability properties of the classical trajectories of charged particles are investigated in a two dimensional stadium-shaped inverse magnetic domain, where the magnetic field is zero inside the stadium domain and constant outside. In the case of infinite magnetic field the dynamics of the system is the same as in the Bunimovich billiard, i.e., ergodic and mixing. However, for weaker magnetic fields the phase space becomes mixed and the chaotic part gradually shrinks. The numerical measurements of the Lyapunov exponent (performed with a novel method) and the integrable/chaotic phase space volume ratio show that both quantities can be smoothly tuned by varying the external magnetic field. A possible experimental realization of the arrangement is also discussed.Comment: 4 pages, 6 figure

    Lupine Allergy: Not Simply Cross-Reactivity with Peanut or Soy

    Get PDF
    Background: Reports of lupine allergy are increasing as its use in food products increases. Lupine allergy might be the consequence of cross-reactivity after sensitization to peanut or other legumes or de novo sensitization. Lupine allergens have not been completely characterized. Objectives: We sought to identify allergens associated with lupine allergy, evaluate potential cross-reactivity with peanut, and determine eliciting doses (EDs) for lupine allergy by using double-blind, placebo-controlled food challenges. Methods: Six patients with a history of allergic reactions to lupine flour were evaluated by using skin prick tests, CAP tests, and double-blind, placebo-controlled food challenges. Three of these patients were also allergic to peanut. Lupine allergens were characterized by means of IgE immunoblotting and peptide sequencing. Results: In all 6 patients the ED for lupine flour was 3 mg or less for subjective symptoms and 300 mg or more for objective symptoms. The low ED and moderate-to-severe historical symptoms indicate significant allergenicity of lupine flour. Two patients allergic to lupine but not to peanut displayed IgE binding predominantly to approximately 66-kd proteins and weak binding to 14- and 24-kd proteins, whereas patients with peanut allergy and lupine allergy showed weak binding to lupine proteins of about 14 to 21 or 66 kd. Inhibition of binding was primarily species specific. Conclusion: Lupine allergy can occur either separately or together with peanut allergy, as demonstrated by 3 patients who are cosensitized to peanut and lupine. Clinical implications: Lupine flour is allergenic and potentially cross-reactive with peanut allergen, thus posing some risk if used as a replacement for soy flour

    Mean parameter model for the Pekar-Fr\"{o}hlich polaron in a multilayered heterostructure

    Full text link
    The polaron energy and the effective mass are calculated for an electron confined in a finite quantum well constructed of GaAs/AlxGa1xAsGaAs/Al_x Ga_{1-x} As layers. To simplify the study we suggest a model in which parameters of a medium are averaged over the ground-state wave function. The rectangular and the Rosen-Morse potential are used as examples. To describe the confined electron properties explicitly to the second order of perturbations in powers of the electron-phonon coupling constant we use the exact energy-dependent Green function for the Rosen-Morse confining potential. In the case of the rectangular potential, the sum over all intermediate virtual states is calculated. The comparison is made with the often used leading term approximation when only the ground-state is taken into account as a virtual state. It is shown that the results are quite different, so the incorporation of all virtual states and especially those of the continuous spectrum is essential. Our model reproduces the correct three-dimensional asymptotics at both small and large widths. We obtained a rather monotonous behavior of the polaron energy as a function of the confining potential width and found a peak of the effective mass. The comparison is made with theoretical results by other authors. We found that our model gives practically the same (or very close) results as the explicit calculations for potential widths L10A˚L \geq 10 \AA.Comment: 12 pages, LaTeX, including 5 PS-figures, subm. to Phys. Rev. B, new data are discusse

    Extremal single-charge small black holes: Entropy function analysis

    Full text link
    We study stretched horizons of the type AdS_2 x S^8 for certain spherically symmetric extremal small black holes in type IIA carrying only D0-brane charge making use of Sen's entropy function formalism for higher derivative gravity. A scaling argument is given to show that the entropy of this class of black holes for large charge behaves as \sqrt{|q|} where q is the electric charge. The leading order result arises from IIA string loop corrections. We find that for solutions to exist the force on a probe D0-brane has to vanish and we prove that this feature persists to all higher derivative orders. We comment on the nature of the extremum of these solutions and on the sub-leading corrections to the entropy. The entropy of other small black holes related by dualities to our case is also discussed.Comment: 19 pages, v2:typos corrected and references adde

    The Physical Conditions in Starbursts Derived from Bayesian Fitting of Mid-IR SEDS: 30 Doradus as a Template

    Get PDF
    To understand and interpret the observed Spectral Energy Distributions (SEDs) of starbursts, theoretical or semi-empirical SED models are necessary. Yet, while they are well-founded in theory, independent verification and calibration of these models, including the exploration of possible degeneracies between their parameters, are rarely made. As a consequence, a robust fitting method that leads to unique and reproducible results has been lacking. Here we introduce a novel approach based on Bayesian analysis to fit the Spitzer-IRS spectra of starbursts using the SED models proposed by Groves et al. (2008). We demonstrate its capabilities and verify the agreement between the derived best fit parameters and actual physical conditions by modelling the nearby, well-studied, giant HII region 30 Dor in the LMC. The derived physical parameters, such as cluster mass, cluster age, ISM pressure and covering fraction of photodissociation regions, are representative of the 30 Dor region. The inclusion of the emission lines in the modelling is crucial to break degeneracies. We investigate the limitations and uncertainties by modelling sub-regions, which are dominated by single components, within 30 Dor. A remarkable result for 30 Doradus in particular is a considerable contribution to its mid-infrared spectrum from hot ({\simeq} 300K) dust. The demonstrated success of our approach will allow us to derive the physical conditions in more distant, spatially unresolved starbursts.Comment: 17 pages, 10 figures. Accepted por publication in the Astrophysical Journa

    The Baryonic Phase in Holographic Descriptions of the QCD Phase Diagram

    Full text link
    We study holographic models of the QCD temperature-chemical potential phase diagram based on the D3/D7 system with chiral symmetry breaking. The baryonic phase may be included through linked D5-D7 systems. In a previous analysis of a model with a running gauge coupling a baryonic phase was shown to exist to arbitrarily large chemical potential. Here we explore this phase in a more generic phenomenological setting with a step function dilaton profile. The change in dilaton generates a linear confining qˉq\bar{q}q potential and opposes the screening effect of temperature. We show that the persistence of the baryonic phase depends on the step size and that QCD-like phase diagrams can be described. The baryonic phase's existence is qualitatively linked to the existence of confinement in Wilson loop computations in the background.Comment: 21 pages, 7 figure
    corecore