73 research outputs found

    ANSER : five years of global academic collaboration building evidence for sexual and reproductive health and rights policies

    Get PDF
    The ANSER publication 'Five years of global academic collaboration building evidence for sexual and reproductive health and rights policies' has been published. As a network, we consider it our duty to bridge the gap between research and policymaking, as we strongly believe sexual and reproductive health and rights (SRHR) policies should be based on scientific evidence. In this publication you will find a glimpse of what we have achieved so far. May it inspire you to keep advocating sexual and reproductive health and rights worldwide. You can find the PDF version attached to this message. If you would like a copy of the publication, you can send an email to [email protected]. Thanks to Ghent University for the support and all our colleagues for their contributions

    Changing guards: time to move beyond Body Mass Index for population monitoring of excess adiposity

    Get PDF
    With the obesity epidemic, and the effects of aging populations, human phenotypes have changed over two generations, possibly more dramatically than in other species previously. As obesity is an important and growing hazard for population health, we recommend a systematic evaluation of the optimal measure(s) for population-level excess body fat. Ideal measure(s) for monitoring body composition and obesity should be simple, as accurate and sensitive as possible, and provide good categorisation of related health risks. Combinations of anthropometric markers or predictive equations may facilitate better use of anthropometric data than single measures to estimate body composition for populations. Here we provide new evidence that increasing proportions of aging populations are at high health-risk according to waist circumference, but not body mass index (BMI), so continued use of BMI as the principal population-level measure substantially underestimates the health-burden from excess adiposity

    High angular resolution near-IR view of the Orion Bar revealed by Keck/NIRC2

    Get PDF
    Nearby Photo-Dissociation Regions (PDRs), where the gas and dust are heated by the far UV-irradiation emitted from stars, are ideal templates to study the main stellar feedback processes. With this study we aim to probe the detailed structures at the interfaces between ionized, atomic, and molecular gas in the Orion Bar. This nearby prototypical strongly irradiated PDR will be among the first targets of the James Webb Space Telescope (JWST) within the framework of the PDRs4All Early Release Science program. We employed the sub-arcsec resolution accessible with Keck-II NIRC2 and its adaptive optics system to obtain the most detailed and complete images, ever performed, of the vibrationally excited line H2_2 1-0 S(1) at 2.12~μ\mum, tracing the dissociation front, and the [FeII] and Brγ\gamma lines, at 1.64 and 2.16~μ\mum respectively, tracing the ionization front. We obtained narrow-band filter images in these key gas line diagnostic over 40\sim 40'' at spatial scales of \sim0.1'' (\sim0.0002~pc or \sim40~AU at 414~pc). The Keck/NIRC2 observations spatially resolve a plethora of irradiated sub-structures such as ridges, filaments, globules and proplyds. A remarkable spatial coincidence between the H2_2 1-0 S(1) vibrational and HCO+^+ J=4-3 rotational emission previously obtained with ALMA is observed. This likely indicates the intimate link between these two molecular species and highlights that in high pressure PDR the H/H2_2 and C+^+/C/CO transitions zones come closer as compared to a typical layered structure of a constant density PDR. This is in agreement with several previous studies that claimed that the Orion Bar edge is composed of very small, dense, highly irradiated PDRs at high thermal pressure immersed in a more diffuse environment

    High-angular-resolution NIR view of the Orion Bar revealed by Keck/NIRC2

    Get PDF
    Context. Nearby photo-dissociation regions (PDRs), where the gas and dust are heated by the far-ultraviolet (FUV) irradiation emitted from stars, are ideal templates with which to study the main stellar feedback processes. Aims. With this study, we aim to probe the detailed structures at the interfaces between ionized, atomic, and molecular gas in the Orion Bar. This nearby prototypical strongly irradiated PDR are among the first targets of the James Webb Space Telescope (JWST) within the framework of the PDRs4All Early Release Science program. Methods. We employed the subarcsecond resolution accessible with Keck-II NIRC2 and its adaptive optics system to obtain images of the vibrationally excited line H2 1-0 S(1) at 2.12 μm that are more detailed and complete than ever before. H2 1-0 S(1) traces the dissociation front (DF), and the [FeII] and Brγ lines, at 1.64 and 2.16 μm, respectively, trace the ionization front (IF). The former is a powerful tracer of the FUV radiation field strength and gas density distribution at the PDR edge, while the last two trace the temperature and density distribution from the ionized gas to the PDR. We obtained narrow-band filter images in these key gas line diagnostics over ∼40″ at spatial scales of ∼0.1″ (∼0.0002 pc or ∼40 AU at 414 pc). Results. The Keck/Near Infrared Camera 2 (NIRC2) observations spatially resolve a plethora of irradiated substructures such as ridges, filaments, globules, and proplyds. This portends what JWST should accomplish and how it will complement the highest resolution Atacama Large Millimeter/submillimeter Array (ALMA) maps of the molecular cloud. We observe a remarkable spatial coincidence between the H2 1-0 S(1) vibrational and HCO+ J = 4-3 rotational emission previously obtained with ALMA. This likely indicates the intimate link between these two molecular species and highlights that in high-pressure PDRs, the H/H2 and C+/C/CO transitions zones come closer than in a typical layered structure of a constant density PDR. The H/H2 dissociation front appears as a highly structured region containing substructures with a typical thickness of a few ∼10-3 pc

    Minimally invasive complete response assessment of the breast after neoadjuvant systemic therapy for early breast cancer (micra trial) : interim analysis of a multicenter observational cohort study

    Get PDF
    Background The added value of surgery in breast cancer patients with pathological complete response (pCR) after neoadjuvant systemic therapy (NST) is uncertain. The accuracy of imaging identifying pCR for omission of surgery, however, is insufficient. We investigated the accuracy of ultrasound-guided biopsies identifying breast pCR (ypT0) after NST in patients with radiological partial (rPR) or complete response (rCR) on MRI. Methods We performed a multicenter, prospective single-arm study in three Dutch hospitals. Patients with T1-4(N0 or N +) breast cancer with MRI rPR and enhancement <= 2.0 cm or MRI rCR after NST were enrolled. Eight ultrasound-guided 14-G core biopsies were obtained in the operating room before surgery close to the marker placed centrally in the tumor area at diagnosis (no attempt was made to remove the marker), and compared with the surgical specimen of the breast. Primary outcome was the false-negative rate (FNR). Results Between April 2016 and June 2019, 202 patients fulfilled eligibility criteria. Pre-surgical biopsies were obtained in 167 patients, of whom 136 had rCR and 31 had rPR on MRI. Forty-three (26%) tumors were hormone receptor (HR)-positive/HER2-negative, 64 (38%) were HER2-positive, and 60 (36%) were triple-negative. Eighty-nine patients had pCR (53%; 95% CI 45-61) and 78 had residual disease. Biopsies were false-negative in 29 (37%; 95% CI 27-49) of 78 patients. The multivariable associated with false-negative biopsies was rCR (FNR 47%; OR 9.81, 95% CI 1.72-55.89; p = 0.01); a trend was observed for HR-negative tumors (FNR 71% in HER2-positive and 55% in triple-negative tumors; OR 4.55, 95% CI 0.95-21.73; p = 0.058) and smaller pathological lesions (6 mm vs 15 mm; OR 0.93, 95% CI 0.87-1.00; p = 0.051). Conclusion The MICRA trial showed that ultrasound-guided core biopsies are not accurate enough to identify breast pCR in patients with good response on MRI after NST. Therefore, breast surgery cannot safely be omitted relying on the results of core biopsies in these patients

    CSF omeprazole concentration and albumin quotient following high dose intravenous omeprazole in dogs.

    Full text link
    peer reviewedClinical signs of syringomyelia and hydrocephalus occur secondary to cerebrospinal fluid (CSF) accumulation within the central nervous system. Omeprazole is recommended to treat these conditions despite little evidence of its capacity to decrease CSF production in the dog. Studies into new treatments are hampered by difficulties in measuring CSF production. The albumin quotient (QAlb), the ratio between CSF and serum albumin concentrations, may reflect CSF production and any decrease in CSF production should be associated with an increase in QAlb. The primary objective of this study was to determine CSF omeprazole concentration after administration of a high intravenous dose of omeprazole and to evaluate its impact on QAlb in the dog. The second aim was to validate QAlb as a surrogate marker of CSF production. Eighteen dogs were included in this prospective crossover placebo-controlled study. Each dog received omeprazole (10 mg/kg), acetazolamide (50 mg/kg) combined with furosemide (1 mg/kg) and saline. Blood and CSF samples were obtained on day 0 and then every 7 days, one hour after drug administration. Omeprazole concentrations (2.0 ± 0.4 μmol/L) reached in CSF after high dose omeprazole were lower than the concentrations previously described as decreasing CSF production in dogs. There was no significant increase in QAlb following administration of acetazolamide/furosemide, prohibiting validation of QAlb as a surrogate marker for CSF production. Several dogs presented transient mild side effects after injection of acetazolamide/furosemide. High dose omeprazole was well tolerated in all dogs

    PDRs4All IV. An embarrassment of riches: Aromatic infrared bands in the Orion Bar

    Full text link
    (Abridged) Mid-infrared observations of photodissociation regions (PDRs) are dominated by strong emission features called aromatic infrared bands (AIBs). The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 μ\mum. The most sensitive, highest-resolution infrared spectral imaging data ever taken of the prototypical PDR, the Orion Bar, have been captured by JWST. We provide an inventory of the AIBs found in the Orion Bar, along with mid-IR template spectra from five distinct regions in the Bar: the molecular PDR, the atomic PDR, and the HII region. We use JWST NIRSpec IFU and MIRI MRS observations of the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288). We extract five template spectra to represent the morphology and environment of the Orion Bar PDR. The superb sensitivity and the spectral and spatial resolution of these JWST observations reveal many details of the AIB emission and enable an improved characterization of their detailed profile shapes and sub-components. While the spectra are dominated by the well-known AIBs at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 μ\mum, a wealth of weaker features and sub-components are present. We report trends in the widths and relative strengths of AIBs across the five template spectra. These trends yield valuable insight into the photochemical evolution of PAHs, such as the evolution responsible for the shift of 11.2 μ\mum AIB emission from class B11.2_{11.2} in the molecular PDR to class A11.2_{11.2} in the PDR surface layers. This photochemical evolution is driven by the increased importance of FUV processing in the PDR surface layers, resulting in a "weeding out" of the weakest links of the PAH family in these layers. For now, these JWST observations are consistent with a model in which the underlying PAH family is composed of a few species: the so-called 'grandPAHs'.Comment: 25 pages, 10 figures, to appear in A&

    PDRs4All III: JWST's NIR spectroscopic view of the Orion Bar

    Full text link
    (Abridged) We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the HII region to the atomic PDR (crossing the ionisation front (IF)), and the subsequent transition to the molecular PDR (crossing the dissociation front (DF)). We use high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science Program. The NIRSpec data reveal a forest of lines including, but not limited to, HeI, HI, and CI recombination lines, ionic lines, OI and NI fluorescence lines, Aromatic Infrared Bands (AIBs including aromatic CH, aliphatic CH, and their CD counterparts), CO2 ice, pure rotational and ro-vibrational lines from H2, and ro-vibrational lines HD, CO, and CH+, most of them detected for the first time towards a PDR. Their spatial distribution resolves the H and He ionisation structure in the Huygens region, gives insight into the geometry of the Bar, and confirms the large-scale stratification of PDRs. We observe numerous smaller scale structures whose typical size decreases with distance from Ori C and IR lines from CI, if solely arising from radiative recombination and cascade, reveal very high gas temperatures consistent with the hot irradiated surface of small-scale dense clumps deep inside the PDR. The H2 lines reveal multiple, prominent filaments which exhibit different characteristics. This leaves the impression of a "terraced" transition from the predominantly atomic surface region to the CO-rich molecular zone deeper in. This study showcases the discovery space created by JWST to further our understanding of the impact radiation from young stars has on their natal molecular cloud and proto-planetary disk, which touches on star- and planet formation as well as galaxy evolution.Comment: 52 pages, 30 figures, submitted to A&

    PDRs4All II: JWST's NIR and MIR imaging view of the Orion Nebula

    Full text link
    The JWST has captured the most detailed and sharpest infrared images ever taken of the inner region of the Orion Nebula, the nearest massive star formation region, and a prototypical highly irradiated dense photo-dissociation region (PDR). We investigate the fundamental interaction of far-ultraviolet photons with molecular clouds. The transitions across the ionization front (IF), dissociation front (DF), and the molecular cloud are studied at high-angular resolution. These transitions are relevant to understanding the effects of radiative feedback from massive stars and the dominant physical and chemical processes that lead to the IR emission that JWST will detect in many Galactic and extragalactic environments. Due to the proximity of the Orion Nebula and the unprecedented angular resolution of JWST, these data reveal that the molecular cloud borders are hyper structured at small angular scales of 0.1-1" (0.0002-0.002 pc or 40-400 au at 414 pc). A diverse set of features are observed such as ridges, waves, globules and photoevaporated protoplanetary disks. At the PDR atomic to molecular transition, several bright features are detected that are associated with the highly irradiated surroundings of the dense molecular condensations and embedded young star. Toward the Orion Bar PDR, a highly sculpted interface is detected with sharp edges and density increases near the IF and DF. This was predicted by previous modeling studies, but the fronts were unresolved in most tracers. A complex, structured, and folded DF surface was traced by the H2 lines. This dataset was used to revisit the commonly adopted 2D PDR structure of the Orion Bar. JWST provides us with a complete view of the PDR, all the way from the PDR edge to the substructured dense region, and this allowed us to determine, in detail, where the emission of the atomic and molecular lines, aromatic bands, and dust originate
    corecore