108 research outputs found

    Natural disturbances and the physiognomy of pine savannas : A phenomenological model

    Get PDF
    Abstract. Question: The decline of the Pinus palustris ecosystems has resulted from anthropogenic influences, such as conversion to pine plantation forestry, agriculture and land development, all of which are closely related to increases in human populations. Other effects, however, have arisen from alterations in disturbance regimes that maintain the structure and function of these ecosystems. How have alterations of the disturbance regime altered the physiognomy of ‘old-growth’ stands, and what are the implications for ecosystem conservation and restoration? Methods: In contrast to models that emphasize close interactions among the vertically complex strata, we develop a conceptual phenomenological model for the physiognomic structure of Pinus palustris stands. We relate two natural disturbances (tropical storms and fire) that affect different stages of the life cycle to different aspects of the physiognomic structure. We then compare overstorey stand structure and ground cover composition of two old-growth longleaf stands near the extremes of different composite disturbance regimes: the Wade Tract (frequent hurricanes and fire) and the Boyd Tract (infrequent hurricanes and long-term fire exclusion). Results: We predict that tropical storms and fires have different effects on stand physiognomy. Tropical storms are periodic, and sometimes intense, whereas fires are more frequent and less intense. Hurricanes directly influence the overstorey via wind-caused damage and mortality, and indirectly influence the herb layer by altering the spatial distribution of shading and litter accumulation. Fire exerts direct effects on juvenile stages and indirect effects on the herb layer via fine fuel consumption and selective mortality of potential competitors of P. palustris juveniles. These differences in effects of disturbances can result in widely different physiognomies for P. palustris stands. Finally, some global climate change scenarios have suggested that changes may occur in tropical storm and fire regimes, altering frequency and severity. Such changes may greatly affect pine stands, and ultimately entire pine savanna ecosystems. Conclusions: Our phenomenological model of disturbance regimes in Pinus palustris old-growth produces very different physiognomies for different disturbances regimes that reflect natural process and human management actions. This model can be used to derive restoration strategies for pine savannas that are linked to reinstitution of important ecological processes rather than specific physiognomic states

    Black Hole Entropy and Superconformal Field Theories on Brane-Antibrane Systems

    Full text link
    We obtain the enropy of Schwarzschild and charged black holes in D>4 from superconformal gases that live on p=10-D dimensional brane-antibrane systems wrapped on T^p. The preperties of the strongly coupled superconformal theories such as the appearance of hidden dimensions (for p=1,4) and fractional strings (for p=5) are crucial for our results. In all cases, the Schwarzschild radius is given by the transverse fluctuations of the branes and antibranes due to the finite temperature. We show that our results can be generalized to multicharged black holes.Comment: 24 pages in phyzzx.te

    Temporal, spatial, and structural patterns of adult trembling aspen and white spruce mortality in Quebec's boreal forest

    Get PDF
    Temporal, spatial, and structural patterns of adult trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench) Voss) mortality were studied in intact 150-year-old stands in the southwestern boreal forest of Quebec. For both species, mortality decreases (number of dead trees/total number of trees) with distance from the lake edge until 100-150 m, from which point it slightly increases. Strong peaks in mortality were found for 40- to 60-year-old aspen mainly between 1974 and 1992. Such mortality in relatively young aspen is likely related to competition for light from the dominant canopy trees. Also, the recruitment of this young aspen cohort is presumably the result of a stand breakup that occurred when the initial aspen-dominated stand was between 90 and 110 years old. For spruce, strong peaks in mortality were found in 110- to 150-year-old trees and they occurred mainly after 1980. No clear explanation could be found for these peaks, but we suggest that they may be related to senescence or weakening of the trees following the last spruce budworm outbreak. Suppressed and codominant aspen had a much higher mortality ratio than spruce in the same height class, while more surprisingly, no difference in mortality rate was found between dominant trees of the two species. Most spruce trees were found as standing dead, which leads us to reject the hypothesis that windthrow is an important cause of mortality for spruce in our forests

    The Alaska Arctic Vegetation Archive (AVA-AK)

    Get PDF
    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are stored in a Turboveg database. A standardized Pan Arctic Species List provides a consistent nomenclature for vascular plants, bryophytes, and lichens in the archive. A web-based online Alaska Arctic Geoecological Atlas (AGA-AK) allows viewing and downloading the species data in a variety of formats, and provides access to a wide variety of ancillary data. We conducted a preliminary cluster analysis of the first 16 datasets (1,613 plots) to examine how the spectrum of derived clusters is related to the suite of datasets, habitat types, and environmental gradients. We present the contents of the archive, assess its strengths and weaknesses, and provide three supplementary files that include the data dictionary, a list of habitat types, an overview of the datasets, and details of the cluster analysis

    Forest Vegetation of the Colorado Front Range Usa Composition and Dynamics

    No full text
    corecore