57 research outputs found

    Chemical genetics : receptor-ligand pairs for rapid manipulation of neuronal activity

    Get PDF
    PMID: 22119143 [PubMed - indexed for MEDLINE] PMCID: PMC3294416 Free PMC ArticlePeer reviewedPublisher PD

    Cerebellar molecular layer interneurons are dispensable for cued and contextual fear conditioning

    Get PDF
    Funding Information: We were supported by the Biotechnology and Biological Sciences Research Council grant BB/H001123/1 (P.W.), the Medical Research Council grants G1100546/2 and G0800399 (P.W.) and the University of Aberdeen (K.L.H.M.-P., M.W.-F., G.R. and P.W.). M.W.F. is currently supported by the Intramural Research Programme at the National Institute of Health, USA. Open Access funding enabled and organized by Projekt DEAL.Peer reviewedPublisher PD

    Disentangling neuronal inhibition and inhibitory pathways in the lateral habenula

    Get PDF
    The lateral habenula (LHb) is hyperactive in depression, and thus potentiating inhibition of this structure makes an interesting target for future antidepressant therapies. However, the circuit mechanisms mediating inhibitory signalling within the LHb are not well-known. We addressed this issue by studying LHb neurons expressing either parvalbumin (PV) or somatostatin (SOM), two markers of particular sub-classes of neocortical inhibitory neurons. Here, we find that both PV and SOM are expressed by physiologically distinct sub-classes. Furthermore, we describe multiple sources of inhibitory input to the LHb arising from both local PV-positive neurons, from PV-positive neurons in the medial dorsal thalamic nucleus, and from SOM-positive neurons in the ventral pallidum. These findings hence provide new insight into inhibitory control within the LHb, and highlight that this structure is more neuronally diverse than previously thought

    Production and Titering of Recombinant Adeno-associated Viral Vectors

    Get PDF
    In recent years recombinant adeno-associated viral vectors (AAV) have become increasingly valuable for in vivo studies in animals, and are also currently being tested in human clinical trials. Wild-type AAV is a non-pathogenic member of the parvoviridae family and inherently replication-deficient. The broad transduction profile, low immune response as well as the strong and persistent transgene expression achieved with these vectors has made them a popular and versatile tool for in vitro and in vivo gene delivery. rAAVs can be easily and cheaply produced in the laboratory and, based on their favourable safety profile, are generally given a low safety classification. Here, we describe a method for the production and titering of chimeric rAAVs containing the capsid proteins of both AAV1 and AAV2. The use of these so-called chimeric vectors combines the benefits of both parental serotypes such as high titres stocks (AAV1) and purification by affinity chromatography (AAV2). These AAV serotypes are the best studied of all AAV serotypes, and individually have a broad infectivity pattern. The chimeric vectors described here should have the infectious properties of AAV1 and AAV2 and can thus be expected to infect a large range of tissues, including neurons, skeletal muscle, pancreas, kidney among others. The method described here uses heparin column purification, a method believed to give a higher viral titer and cleaner viral preparation than other purification methods, such as centrifugation through a caesium chloride gradient. Additionally, we describe how these vectors can be quickly and easily titered to give accurate reading of the number of infectious particles produced

    Parvalbumin-positive interneurons of the prefrontal cortex support working memory and cognitive flexibility

    Get PDF
    We were supported by the Biotechnology and Biological Sciences Research Council grant BB/H001123/1 (P.W.), the Medical Research Council grants G0601498 and G1100546/2 (P.W.), Tenovus Scotland Grant G09/17 (A.J.M.) and the University of Aberdeen (P.W.). We thank O. Tüscher for discussion, P. Teismann and the microscopy core facility at the University of Aberdeen for the use of microscopy equipment, L. Strachan, A. Plano, S. Deiana for help with behavioral testing.Peer reviewedPublisher PD

    Epileptic Seizure Detection on an Ultra-Low-Power Embedded RISC-V Processor Using a Convolutional Neural Network

    Get PDF
    The treatment of refractory epilepsy via closed-loop implantable devices that act on seizures either by drug release or electrostimulation is a highly attractive option. For such implantable medical devices, efficient and low energy consumption, small size, and efficient processing architectures are essential. To meet these requirements, epileptic seizure detection by analysis and classification of brain signals with a convolutional neural network (CNN) is an attractive approach. This work presents a CNN for epileptic seizure detection capable of running on an ultra-low-power microprocessor. The CNN is implemented and optimized in MATLAB. In addition, the CNN is also implemented on a GAP8 microprocessor with RISC-V architecture. The training, optimization, and evaluation of the proposed CNN are based on the CHB-MIT dataset. The CNN reaches a median sensitivity of 90% and a very high specificity over 99% corresponding to a median false positive rate of 6.8 s per hour. After implementation of the CNN on the microcontroller, a sensitivity of 85% is reached. The classification of 1 s of EEG data takes t=35 ms and consumes an average power of P≈140 μW. The proposed detector outperforms related approaches in terms of power consumption by a factor of 6. The universal applicability of the proposed CNN based detector is verified with recording of epileptic rats. This results enable the design of future medical devices for epilepsy treatment

    Incidence, prevalence and risk factors for hepatitis C in Danish prisons

    Get PDF
    Hepatitis C virus (HCV) infection is prevalent among people in prison and prisons could therefore represent a unique opportunity to test risk groups for HCV. The aim of this sero-epidemiological study was to determine the incidence and prevalence of HCV infection and the corresponding risk factors in Danish prisons. Participants, recruited from eight Danish prisons, were tested for HCV using dried blood spots and filled out a questionaire with demographic data and risk factors for HCV infection. In total, 76.9% (801/1041) of all eligible prisoners consented to participate. The prevalence of HCV RNA positive prisoners was 4.2% (34/801) and the in-prison incidence rate was 0.7-1.0 per 100PY overall and 18-24/100PY among PWIDs. Infected prisoners were older than the overall population with a mean age of 42 years and only 17.6% (6/34) were younger than 35 years. The prevalence of PWID was 8.5% (68/801) and only 3% (2/68) of PWID were younger than 25 years. Among the PWID, 85.3% (58/68) had ever received opioid substitution therapy (OST) and 47.1% (32/68) were currently receiving OST. Risk factors associated with HCV infection were intravenous drug use, age ≥ 40 years, and being incarcerated ≥ 10 years. In conclusion, the prevalence of PWID in Danish prisons is low, possibly reflecting a decrease in injecting among the younger generation. This together with OST coverage could explain the low prevalence of HCV infection. However among PWIDs in prison the incidence remains high, suggesting a need for improved HCV prevention in prison

    Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice

    Get PDF
    Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs). However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS)-related complex spike responses, and molecular layer interneuron (MLI) activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval. Purkinje cell simple spike suppression is a central driving mechanism in cerebellar conditioning. Here, ten Brinke etal. show how simple spike suppression, conditioned stimulus-related complex spikes, and molecular layer interneuron (MLI) activity correlate to conditioned eyelid behavior. Moreover, transgenic impairment of MLI input results in deficits in conditioned behavior

    Increased Motor-Impairing Effects of the Neuroactive Steroid Pregnanolone in Mice with Targeted Inactivation of the GABA(A) Receptor gamma 2 Subunit in the Cerebellum

    Get PDF
    Endogenous neurosteroids and neuroactive steroids have potent and widespread actions on the brain via inhibitory GABA(A) receptors. In recombinant receptors and genetic mouse models their actions depend on the alpha, beta, and delta subunits of the receptor, especially on those that form extrasynaptic GABA(A) receptors responsible for non-synaptic (tonic) inhibition, but they also act on synaptically enriched gamma 2 subunit containing receptors and even on alpha beta binary receptors. Here we tested whether behavioral sensitivity to the neuroactive steroid agonist 5 beta-pregnan-3 alpha-ol-20-one is altered in genetically engineered mouse models that have deficient GABA(A) receptor mediated synaptic inhibition in selected neuronal populations. Mouse lines with the GABA(A) receptor gamma 2 subunit gene selectively deleted either in parvalbumin-containing cells (including cerebellar Purkinje cells), cerebellar granule cells, or just in cerebellar Purkinje cells were trained on the accelerated rotating rod and then tested for motor impairment after cumulative intraperitoneal dosing of 5 beta-pregnan-3 alpha-ol-20-one. Motor impairing effects of 5 beta-pregnan-3 alpha-ol-20-one were strongly increased in all three mouse models in which gamma 2 subunit-dependent synaptic GABA(A) responses in cerebellar neurons were genetically abolished. Furthermore, rescue of postsynaptic GABA(A) receptors in Purkinje cells normalized the effect of the steroid. Anxiolytic/explorative effects of the steroid in elevated plus maze and light:dark exploration tests in mice with Purkinje cell gamma 2 subunit inactivation were similar to those in control mice. The results suggest that, when the deletion of gamma 2 subunit has removed synaptic GABA(A) receptors from the specific cerebellar neuronal populations, the effects of neuroactive steroids solely on extrasynaptic alpha beta or alpha beta delta receptors lead to enhanced changes in the cerebellum-generated behavior.Peer reviewe
    corecore