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Toward the functional dissection of neuronal circuits, a number

of new genetic tools have been developed that enable rapid

and reversible manipulation of genetically defined neuronal

subtypes in intact mammalian brain circuits. Alongside the

breakthrough technology of optogenetics, receptor–ligand

pairs provide complementary approaches to modulate

neuronal activity using chemical genetics.
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Introduction
In neuroscience, electrical stimulation, lesions, and inac-

tivation of brain areas have allowed functional mapping of

discrete regions and nuclei [1–5]. However, to understand

how these regions produce meaningful output, analysis

has to zoom into the level of individual cell-types that

constitute local circuits. To this end, clever transgenic

methods employing cell type-specific promoters have

been used for neuronal ablation [6,7], inactivation [8–
11], or inhibition of transmitter release [12–15]. Although

some of these methods permit regulation on a timescale

of days to weeks, they are in principle chronic and

preclude precise temporal deconstruction of complex

biological processes. In addition, chronic interventions

are susceptible to compensatory interference [16]. Along-

side the exquisite temporal resolution afforded through

optogenetics [17–19], complementary chemical-genetic

approaches that permit rapid and reversible manipulation
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of neuronal function have now advanced from a proof of

principle stage to physiological application.

Here, we review recent developments in chemical-

genetic tools for manipulating neuronal activity via

receptor–ligand pairs and discuss their application in

mammalian brain circuits.

Manipulating neuronal activity with ionotropic
receptors
The most direct way to pharmacologically regulate the

activity of neuronal cell-types is through targeted expres-

sion of ligand-gated ion channels (LGICs), followed by

activation with exogenous ligands (Figure 1a). An example

is the transgenic overexpression of high affinity acetyl-

choline receptors (nAChRs) in dopaminergic neurons,

which resulted in hyperdopaminergic behavior upon

low-dose administration of nicotine [20]. However, to allow

versatile and precise manipulations of neuronal activity,

receptor–ligand pairs must be orthogonal. That is, neither

the receptor nor its ligand must have endogenous inter-

action partners. In addition, the receptor must not show

activity in the absence of the ligand, which in turn must not

be toxic. Common approaches have been to either hijack

receptor–ligand pairs from other tissues and species, or to

re-engineer endogenous ionotropic receptors.

Neuronal activation with transient receptor
potential channels
One of the first successful methods to drive neuronal firing

using targeted expression of ionotropic receptors was

afforded through the identification of the transient receptor

potential cation channel subfamily V member 1 (TRPV1),

which is mainly expressed in nociceptive peripheral

neurons [21]. When expressed in primary neuronal cul-

tures, TRPV1 drives strong inward currents and membrane

depolarization in the presence of vanilloid-like ligands,

including the pungent molecule capsaicin [21–23]. Sim-

ilarly, TRPM8 transduces electrochemical signals in the

presence of menthol [22,24]. Although effective for ligand-

dependent membrane depolarization, use of TRPV1 for

circuit analysis is complicated by baseline effects in the

absence of ligand gating, and excitotoxicity in the presence

of high agonist concentrations [22,25�]. Nevertheless, in

mice conditionally expressing TRPV1, moderate doses of

capsaicin have been shown to reversibly induce dose-de-

pendent neuronal firing on a timescale of seconds without

overt agonist-independent baseline effects or excitotoxi-

city [26�]. Furthermore, unilateral activation of striatal

neurons in these mice resulted in contra-lateral turning
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Receptor–ligand systems for rapid modulation of neuronal activity. (a) Left, Ligand-gated influx of free Na+ activates voltage-gated calcium channels

(VGCC), resulting in Ca2+ influx, depolarization, and increased firing. Middle, ligand-gated influx of Cl� results in hyperpolarization and neuronal

inhibition. Right, Pharmacologically selective effector molecule (PSEM)-gated influx of cations, calcium, or chloride through combination of

pharmacologically selective actuator modules (PSAMs) with different ion-pore domains to manipulate neuronal activity or inhibition, respectively. (b)

Second messenger cascades associated with Gq, and Gi signaling. Left, Gq signaling activates Phospholipase C beta (PLC-b), which hydrolyzes

phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol triphosphate (IP3) and diacylglycerol (DAG). This leads to increased levels of free Ca2+ or

protein kinase C (PKC) activation. Reductions in PIP2 levels may also lead to closure of KCNQ channels causing depolarization and increased neuronal

firing. Right, Gi signaling activates inward rectifying potassium channels (GIRKs), resulting in hyperpolarization and inhibition. Independently, activated

Gi also inhibits adenylyl cyclase (AC), which promotes cAMP formation and protein kinase A (PKA) activation.
behavior starting within 5 min of capsaicin application and

lasting for about 10 min [26�]. ‘Caging’ ligands for light

controllable photo release [22] further enhances the

temporal and spatial resolution of this technology. A dis-

advantage of the TRPV1 approach is that capsaicin acti-

vates peripheral pain receptors and does not readily cross

the BBB. In vivo experiments will thus benefit from

TRPV1 null backgrounds, and the use of other vanil-

loid-like molecules with better binding kinetics, and

BBB permeability to allow systemic ligand administration.

Neuronal silencing with ivermectin-gated
chloride channels
For many experimental applications that probe circuit

function in vivo, inhibition rather than excitation of

neuronal populations is desired. Toward this goal, Lechner

et al. have taken advantage of a glutamate-gated chloride

channel (GluCl) from Caenorhabditis elegans, which is acti-

vated by the anthelmintic drug ivermectin [27–29]. Mam-

malian neurons expressing the GluCl a and b subunits in
vitro showed ivermectin-induced membrane potential

hyperpolarization and action potential shunting within
www.sciencedirect.com 
seconds, but delayed ligand unbinding and recovery

[27]. In vivo intraperitoneal injection of ivermectin evoked

turning behavior in mice with unilateral striatal GluCl

expression, which peaked 12–48 hours after injection

and lasted for days [29]. This silencing method has since

been used in mice to investigate the roles of subtypes of

GABAergic amygdala neurons in fear conditioning and

hypothalamic neurons in aggression [30,31]. Challenges

associated with variability in receptor expression, and the

need for two subunits [29–31] might be overcome by

implementing human a1 glycine receptor subunits engin-

eered to have low glycine, but high ivermectin sensitivity

[32]. For this system, however, potential interference with

endogenous glycinergic transmission still has to be tested.

Chemically and genetically engineered ligand-
gated ion channels
Magnus et al. have mutated the ligand-binding domain of

the a7 nicotinic acetylcholine receptor to be un-respon-

sive to the endogenous ligand acetylcholine, but highly

sensitive to a variety of small molecule synthetic ligands

which they coined pharmacologically selective effector
Current Opinion in Neurobiology 2012, 22:54–60
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molecules (PSEMs) [33��]. Fusion of these modified

nAChR ligand-binding domains, termed pharmacologi-

cally selective actuator modules (PSAMs), with the ion-

pore domains of different Cys-loop receptors produced

receptor channels with different ion selectivities (cations,

calcium, or chloride). Chimeras of serotonin 5HT3, or

glycine receptor ion-pore domains with PSAMs, showed

potent activation or silencing in brain slices within sec-

onds to minutes after addition of synthetic ligands. Proof

of principle experiments in vivo showed that the chimeric

glycine receptor efficiently suppressed Agouti-related-

protein-expressing (AgRP) neuron-dependent feeding

behavior tens of minutes after intraperitoneal ligand

injection. The exact on/off-kinetics for each designer

receptor will depend on the specific combination of

ligand-binding and ion-pore domains, as well as the

pharmacokinetic properties of the cognate ligand. Many

of these response properties have yet to be determined.

However, a notable advantage of this system is the

potential to use different ligand and receptor channel

combinations to manipulate separate ionic conductances

in different neurons or circuits in the same animal [33��].

Allosteric modulation of GABAergic
neurotransmission
While most neuronal manipulation techniques influence

activity irrespective of network state, the ‘zolpidem-

method’ modulates physiological GABAA receptor-

mediated transmission via allosteric pharmacology. Mice

engineered to harbor a point mutation in the ‘floxed’

GABAA receptor g2 subunit show unaltered GABAergic

transmission, but are insensitive to the allosteric ligands

zolpidem and DMCM, which normally enhance and

reduce GABA-induced chloride influx through a1–
3bg2 subunit containing receptors (�78% of all GABAA

receptors in mammals), respectively [34–36]. Cell type-

selective reintroduction of the wild-type g2 subunit

together with Cre recombinase allows cell type-selective

subunit swap and reinstatement of drug sensitivity as

shown for cerebellar Purkinje cells [37,38]. In these mice,

zolpidem caused enhanced inhibitory postsynaptic cur-

rents in Purkinje cells in vitro and motor deficits within

minutes after intraperitoneal injection in vivo. The half-

life of zolpidem in rodents is about 20 min [39]. An

advantage of this system is that the same animal may

be used for bidirectional modulation with either zolpidem

or the inverse agonist DMCM. Both drugs can be applied

systemically and can be acutely antagonized with fluma-

zenil [37,38]. A disadvantage is the requirement for a

genetically engineered zolpidem-insensitive background,

which limits its application to mice and rats [40].

Neuronal manipulation using G-protein-
coupled receptors
The brain expresses a large family of G-protein-coupled

receptors (GPCRs), which are activated by a variety of

endogenous and pharmacological ligands. Depending on
Current Opinion in Neurobiology 2012, 22:54–60 
downstream signaling cascades, receptor activation can

have a multitude of cellular effects [41]. These include

the activation, or inactivation of potassium channels,

which in turn lead to reduced or elevated neuronal firing

(Figure 1b). The efficacy of GPCR-mediated neuronal

silencing was nicely shown by transgenic expression of

the Gai-coupled serotonin receptor (Htr1a) in the amyg-

dala of Htr1a�/� knockout mice. Treatment with the

selective agonist 8-hydroxy-2-(di-n-propylamino) tetralin

resulted in qualitative changes in conditioned fear

responses [42,43]. A clear caveat of this approach was

the need for a knockout background. Engineered and

heterologously expressed GPCRs address this issue.

Designer GPCRs
As described for engineered ion channels above, one

method to create orthogonal GPCR–ligand pairs is to

render endogenous receptors insensitive to endogenous

ligands, but sensitive to synthetic ones. Systematic

mutations of the k opioid receptor produced receptors

activated solely by synthetic ligands (RASSLs) [44],

which were sensitive only to synthetic agonists. RASSLs

have since been used in vivo to investigate GPCR sig-

naling in different tissues [45–47]. However, baseline

receptor activities and off-target effects of the synthetic

ligands precluded their use for precise brain circuit

manipulation [48,49]. These teething problems were

overcome in a second generation of RASSLs, so called

designer receptors exclusively activated by designer

drugs (DREADDs) [50].

Engineered from muscarinic acetylcholine receptors

(mAChRs), Armbruster and colleagues generated

DREADDs with little or no baseline activity that were

insensitive to endogenous acetylcholine, but potently

activated by the pharmacologically inert molecule cloza-

pine-N-oxide (CNO). Introductions of Y3.33C and A5.46G

mutations generated DREADDs that coupled to Gq, Gi,

(hM1–5D) or Gs (rM3/b1Ds) signaling pathways without

obvious interference with endogenous GPCR signaling

[50,51]. These receptors provided a genetic means for in
vivo cell type-selective activation (Gq-coupled hM3Dq) or

inhibition (Gi-coupled hM4Di) of neuronal activity,

respectively (Figure 1b). Experimentally, pyramidal cells

in hippocampal slices of mice transgenically expressing

HA-tagged hM3Dq in forebrain showed robust phospho-

lipase C-dependent depolarization and increased firing

minutes after CNO application — presumably through

closure of KCNQ channels. Apart from reduced loco-

motion, hM3Dq-expessing mice showed no overt beha-

vioral alterations in the absence of CNO. However,

intraperitoneal injection of CNO caused dose-dependent

and time-dependent increases in hippocampal network

activity and locomotion, with seizures developing at high

doses. Effects developed within 15 min, peaked approxi-

mately one hour post injection, and lasted for �10 hours.

Notably, comparable drug-induced phenotypes were
www.sciencedirect.com
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observed after re-injections [52��]. Since then, similar on/

off-kinetics have been reported for mCherry-tagged

hM3Dq targeted to AgRP neurons of the mouse hypo-

thalamus [53��]. In these animals CNO injections

increased feeding behavior within minutes, which lasted

for up to eight hours. Chronic CNO injections caused

weight gain, which reversed after CNO withdrawal [53��].
The same authors also expressed the inhibitory

DREADD hM4Di in AgRP neurons, where CNO caused

hyperpolarization and reduced firing in slices (presum-

ably via GIRK channels), as well as reduced food intake

within two hours after intraperitoneal injection [50,53��].
In vivo silencing with hM4Di has also been successfully

used to investigate the functions of the striatopallidal or

striatonigral pathways in drug sensitization [54�], and the

role of serotonergic neurons in respiratory control and

thermo regulation [55].

Allatostatin receptor
Another method to drive neuronal hyperpolarization and

inhibition of action potential firing has exploited the

Drosophila allatostatin receptor (AlstR). Genetic trans-

plantation of the AlstR into mammalian neurons induces

Gi-coupled GIRK channel-mediated silencing in the

presence of the insect peptide allatostatin (Figure 1b)

[56,57]. In ferret cortical slices, allatostatin efficiently

reduced membrane potential, input resistance, and action

potential frequency within minutes. Similar silencing

responses were reported for AlstR-expressing neurons

in slices of mouse spinal cord, hippocampus, amygdala,

and rat brainstem, as well as cortical neurons in vivo
following surface superfusion with allatostatin [58–62].

In vitro, allatostatin-induced effects could be ‘washed-

out’ within 15 min, but local allatostatin applications
Table 1

Receptor–ligand systems applied in vivo.

System

(receptor)

Ligand Timescale

induction

Timescale

reversal

B

perm

Activation

TRPV1 Capsaicin d.a. — s d.a. — s Unkn

hM3Dq CNO d.a. — s/min

sys — tens of min

sys — hours Yes 

PSAM-5HT3 PSEMs d.a. — s d.a. — s Yes 

Inhibition

GABAA Zolpidem d.a. — s/min

sys — min

sys — tens of min Yes 

GluCl Ivermectin d.a. — s/min

sys — hours

d.a. — hours

sys — days

Yes 

AlstR Allatostatin d.a. — min d.a. — min/hours No 

hM4Di CNO d.a. — s/min

sys — hours

sys — hours Yes 

PSAM-GlyR PSEMs d.a. — s/min

sys — tens of min

d.a. — s/min Yes 

d.a., direct tissue application in vitro or in vivo; sys, systemic applicati

approximations and may vary with experimental conditions such as route 

www.sciencedirect.com 
below the brain surface in vivo resulted in neuronal

inactivation for minutes to hours [62]. Whereas Tan

and colleagues found no decrease in silencing efficiency

in the continued or repeated presence of allatostatin,

Wehr et al. reported partial recovery of activity during

allatostatin superfusion, and transient rebounds of hyper-

excitability during washout [60,62]. As allatostatin does

not cross the BBB, it has to be injected locally. Limited

tissue diffusion might account for the reported variability

in silencing efficiency and recovery times [62,63]. Never-

theless, this method has proven successful and has been

widely used in vitro to study single neuron response

properties, and in vivo to delineate the roles of neuronal

subtypes in coordinating locomotor rhythms [61,63],

respiration [58,64], and encoding fear memories [59].

Conclusions
We have entered an era of experimental neurobiology

where imaging, electrophysiological recording, and

genetic manipulation technologies are merging [65].

New methods to manipulate neuronal activity through

optogenetic and chemical genetic methods now allow

interrogation of circuit function from the level of the

synapse to behavior. Although all these methods provide

the power to probe and map neuronal connectivity with

unprecedented resolution, each has its own advantages

and disadvantages. For example, optogenetics provides

temporal control on a millisecond timescale, which in

principle can be used to shape elaborate patterns of

activity to investigate details of neuronal coding [66].

However, optogenetics relies on direct access of photons

to brain tissue, a methodology that requires brain surgery

and is difficult to achieve for prolonged periods of time, or

in distributed neuronal populations. Chemical genetics
BB

eability

Limitations References

own Potential base-line effects, excitotoxicity

with high ligand concentrations

[21–23,25�,26�]

Slow reversal, cellular effects may very

with signaling pathways

[50,52��,53��]

Not yet tested in vivo [33��]

Requires zolpidem-insensitive background,

no absolute silencing possible

[34–38]

Slow on-/off-kinetics, ligand may be toxic

at higher concentrations

[27–31]

Tissue diffusion of ligand might be limited,

effects depend on signaling pathways

[57–64]

Slow reversal, cellular effects may vary

with signaling pathways

[50,53��,54�,55]

Requires further characterization in vivo [33��]

on in vivo. Note that timescales for induction and reversal are only

of ligand application, target cell-type, and experimental read-out.

Current Opinion in Neurobiology 2012, 22:54–60
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provide an alternative and complementary approach to

modulate neuronal activity (see Refs. [53��,67�] for com-

parison of optogenetics and chemical genetics applied to

the same cell type). However, chemical genetic methods

have their own cast of drawbacks (Table 1). For example,

ivermectin-based inhibition through expression of GluCl

channels relies on the availability of multiple subunits,

and is applicable with timescales of hours to days,

whereas allosteric modulation of GABAergic trans-

mission with zolpidem requires expression of wild-type

g2 subunits plus Cre, and is restricted to mice and rats.

For GPCR-based methods, efficiency and time course of

the manipulation may vary with the availability of down-

stream signaling pathways, and effector molecules in

different cell types and developmental stages. In

addition, G-protein-signaling will have multiple cellular

effects, which may complicate data interpretation in

some experimental settings. Regarding reversibility, it

should be kept in mind that independent of the method a

neuron might not be the same after a manipulation as

before. A great advantage of chemical genetics over

optogenetics is the potential for non-invasive or mini-

mally invasive experimental design through systemic

ligand application. This, however, requires transport of

the ligand across the BBB, which has not yet been

achieved for all systems.

Although neuro-technology is advancing at a breakneck

pace, the challenge remains to further define, build upon,

and optimize the evolving toolset for investigating brain

circuit form and function. New frontiers include the

development of synapse-specific manipulation strategies

as well as the exploration of molecular receivers for

physical signals with easy propagation in brain tissue to

combine advantages of current optogenetic and chemical-

genetic techniques. The functional deconstruction of

neuronal circuits will help to understand human brain

development and disease, and a hope for the future is to

advance some of the creative genetic approaches used in

the lab toward therapeutic design.
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