1,507 research outputs found

    Planck Observations of M33

    Get PDF
    We have performed a comprehensive investigation of the global integrated flux density of M33 from radio to ultraviolet wavelengths, finding that the data between \sim100 GHz and 3 THz are accurately described by a single modified blackbody curve with a dust temperature of TdustT_\mathrm{dust} = 21.67±\pm0.30 K and an effective dust emissivity index of βeff\beta_\mathrm{eff} = 1.35±\pm0.10, with no indication of an excess of emission at millimeter/sub-millimeter wavelengths. However, sub-dividing M33 into three radial annuli, we found that the global emission curve is highly degenerate with the constituent curves representing the sub-regions of M33. We also found gradients in TdustT_\mathrm{dust} and βeff\beta_\mathrm{eff} across the disk of M33, with both quantities decreasing with increasing radius. Comparing the M33 dust emissivity with that of other Local Group members, we find that M33 resembles the Magellanic Clouds rather than the larger galaxies, i.e., the Milky Way and M31. In the Local Group sample, we find a clear correlation between global dust emissivity and metallicity, with dust emissivity increasing with metallicity. A major aspect of this analysis is the investigation into the impact of fluctuations in the Cosmic Microwave Background (CMB) on the integrated flux density spectrum of M33. We found that failing to account for these CMB fluctuations would result in a significant over-estimate of TdustT_\mathrm{dust} by \sim5 K and an under-estimate of βeff\beta_\mathrm{eff} by \sim0.4.Comment: Accepted for publication in MNRA

    Compression failure of angle-ply laminates

    Get PDF
    Test results from the compression loading of (+ or - Theta/ - or + Theta)(sub 6s) angle-ply IM7-8551-7a specimens, 0 less than or = Theta less than or = 90 degs, are presented. The observed failure strengths and modes are discussed, and typical stress-strain relations shown. Using classical lamination theory and the maximum stress criterion, an attempt is made to predict failure stress as a function of Theta. This attempt results in poor correlation with test results and thus a more advanced model is used. The model, which is based on a geometrically nonlinear theory, and which was taken from previous work, includes the influence of observed layer waviness. The waviness is described by the wave length and the wave amplitude. The theory is briefly described and results from the theory are correlated with test results. It is shown that by using levels of waviness observed in the specimens, the correlation between predictions and observations is good

    The growth of structure in the Szekeres inhomogeneous cosmological models and the matter-dominated era

    Full text link
    This study belongs to a series devoted to using Szekeres inhomogeneous models to develop a theoretical framework where observations can be investigated with a wider range of possible interpretations. We look here into the growth of large-scale structure in the models. The Szekeres models are exact solutions to Einstein's equations that were originally derived with no symmetries. We use a formulation of the models that is due to Goode and Wainwright, who considered the models as exact perturbations of an FLRW background. Using the Raychaudhuri equation, we write for the two classes of the models, exact growth equations in terms of the under/overdensity and measurable cosmological parameters. The new equations in the overdensity split into two informative parts. The first part, while exact, is identical to the growth equation in the usual linearly perturbed FLRW models, while the second part constitutes exact non-linear perturbations. We integrate numerically the full exact growth rate equations for the flat and curved cases. We find that for the matter-dominated era, the Szekeres growth rate is up to a factor of three to five stronger than the usual linearly perturbed FLRW cases, reflecting the effect of exact Szekeres non-linear perturbations. The growth is also stronger than that of the non-linear spherical collapse model, and the difference between the two increases with time. This highlights the distinction when we use general inhomogeneous models where shear and a tidal gravitational field are present and contribute to the gravitational clustering. Additionally, it is worth observing that the enhancement of the growth found in the Szekeres models during the matter-dominated era could suggest a substitute to the argument that dark matter is needed when using FLRW models to explain the enhanced growth and resulting large-scale structures that we observe today (abridged)Comment: 18 pages, 4 figures, matches PRD accepted versio

    Physiological and Molecular Characterisation of Lucerne (Medicago sativa L.) Germplasm with Improved Seedling Freezing Tolerance

    Get PDF
    We conducted greenhouse experiments to compare 14 lucerne (alfalfa, Medicago sativa L.) germplasms for their survival following freezing. Some are collections adapted to the Grand River National Grasslands in South Dakota. We hypothesised that these collections might have developed a tolerance to survive the frigid growth conditions common there. Two of these collections, River side (RS) and Foster ranch (FR), showed greater freezing tolerance than the other germplasms tested, based on their consistent survival rates with or without cold acclimation. In multiple freezing studies, RS and FR had average survival rates of 74% and 79%, respectively, in contrast to the commercial cultivars Apica and CUF-101 (CUF) (64% and 24%, respectively). The average temperature at which 50% of ions in plant tissues leak out (LT50) by freezing based on leaf electrolyte leakage was closely correlated with survival rates. Leaf LT50 improved 2–3-fold after 3 days of cold acclimation, based on leaf electrolyte leakage analysis, reaching −18°C, –9.6°C, –8.5°C, and −5°C for RS, FR, Apica, and CUF, respectively. Comparison of total soluble sugars and relative water content in shoots before and after cold acclimation showed that they were not well correlated with freezing tolerance and could not explain the superior responses of RS and FR during cold acclimation. Transcript analysis of cold-responsive MsCBF1, MsCBF2 and CAS15B genes showed that RS, FR, Apica and CUF exhibited distinct patterns of cold induction. Although RS, FR and Apica showed a rapid or greater increase in expression level of one or two of these genes, CUF showed only a moderate induction in MsCBF2 and CAS15B transcripts, suggesting that expression of these genes may be a good molecular marker for freezing tolerance in lucerne. The findings provide evidence that freezing tolerance in lucerne is a complex trait and that a combination of different mechanisms may greatly improve freezing tolerance. RS and FR are potential resources in breeding for improving freezing tolerance in lucerne

    Comparison of next-generation portable pollution monitors to measure exposure to PM2.5 from household air pollution in Puno, Peru.

    Get PDF
    Assessment of personal exposure to PM2.5 is critical for understanding intervention effectiveness and exposure-response relationships in household air pollution studies. In this pilot study, we compared PM2.5 concentrations obtained from two next-generation personal exposure monitors (the Enhanced Children MicroPEM or ECM; and the Ultrasonic Personal Air Sampler or UPAS) to those obtained with a traditional Triplex Cyclone and SKC Air Pump (a gravimetric cyclone/pump sampler). We co-located cyclone/pumps with an ECM and UPAS to obtain 24-hour kitchen concentrations and personal exposure measurements. We measured Spearmen correlations and evaluated agreement using the Bland-Altman method. We obtained 215 filters from 72 ECM and 71 UPAS co-locations. Overall, the ECM and the UPAS had similar correlation (ECM ρ = 0.91 vs UPAS ρ = 0.88) and agreement (ECM mean difference of 121.7 µg/m3 vs UPAS mean difference of 93.9 µg/m3 ) with overlapping confidence intervals when compared against the cyclone/pump. When adjusted for the limit of detection, agreement between the devices and the cyclone/pump was also similar for all samples (ECM mean difference of 68.8 µg/m3 vs UPAS mean difference of 65.4 µg/m3 ) and personal exposure samples (ECM mean difference of -3.8 µg/m3 vs UPAS mean difference of -12.9 µg/m3 ). Both the ECM and UPAS produced comparable measurements when compared against a cyclone/pump setup

    Isolation and characterisation of the first microsatellite markers for \u3ci\u3eCyperus rotundus\u3c/i\u3e

    Get PDF
    This is the first report of microsatellite markers for Cyperus rotundus. A total of 191 sequence-specific microsatellite markers were isolated and used to screen12 accessions of C. rotundus and one accession of Cyperus esculentus collected from 10 different countries. Polymorphisms were observed in 49% of the markers tested, 22% of the markers were monomorphic and 29% had weak or no amplification. The best 57 markers are reported, and cluster analysis was used to analyse their resolving power. BLASTx screening of the contig sequences was also performed. Multiallelic loci over all samples ranged from 24% to 60%. The maximum number of alleles detected by the markers suggests a polyploidy nature of all C. rotundus accessions tested, except for the sample N25-Brazil. Chromosome number was determined for N12-Taiwan and used as an internal flow cytometry standard to estimate the amount of DNA within haploid nuclei of the remaining material. Chromosome numbers estimated for C. rotundus were 16 and 24. The markers identified in this study can be used for the identification of biotypes and detection of potential crosses of C. rotundus, to implement management practices for the effective control of this weed

    Template fitting of WMAP 7-year data: anomalous dust or flattening synchrotron emission?

    Full text link
    Anomalous microwave emission at 20-40 GHz has been detected across our Galactic sky. It is highly correlated with thermal dust emission and hence it is thought to be due to spinning dust grains. Alternatively, this emission could be due to synchrotron radiation with a flattening (hard) spectral index. We cross-correlate synchrotron, free-free and thermal dust templates with the WMAP 7-year maps using synchrotron templates at both 408 MHz and 2.3 GHz to assess the amount of flat synchrotron emission that is present, and the impact that this has on the correlations with the other components. We find that there is only a small amount of flattening visible in the synchrotron spectral indices by 2.3 GHz, of around \Delta \beta ~ 0.05, and that the significant level of dust-correlated emission in the lowest WMAP bands is largely unaffected by the choice of synchrotron template, particularly at high latitudes (it decreases by only ~7 per cent when using 2.3 GHz rather than 408 MHz). This agrees with expectation if the bulk of the anomalous emission is generated by spinning dust grains.Comment: 11 pages, 6 figures, 6 tables. Published in MNRA
    corecore