164 research outputs found

    Phylogeny and Diversification Patterns among Vesicomyid Bivalves

    Get PDF
    Vesicomyid bivalves are among the most abundant and diverse symbiotic taxa in chemosynthetic-based ecosystems: more than 100 different vesicomyid species have been described so far. In the present study, we investigated the phylogenetic positioning of recently described vesicomyid species from the Gulf of Guinea and their western Atlantic and Pacific counterparts using mitochondrial DNA sequence data. The maximum-likelihood (ML) tree provided limited support for the recent taxonomic revision of vesicomyids based on morphological criteria; nevertheless, most of the newly sequenced specimens did not cluster with their morphological conspecifics. Moreover, the observed lack of geographic clustering suggests the occurrence of independent radiations followed by worldwide dispersal. Ancestral character state reconstruction showed a significant correlation between the characters “depth” and “habitat” and the reconstructed ML phylogeny suggesting possible recurrent events of ‘stepwise speciation’ from shallow to deep waters in different ocean basins. This is consistent with genus or species bathymetric segregation observed from recent taxonomic studies. Altogether, our results highlight the need for ongoing re-evaluation of the morphological characters used to identify vesicomyid bivalves

    The smaller vesicomyid bivalves in the genus Isorropodon (Bivalvia, Vesicomyidae, Pliocardiinae) also harbour chemoautotrophic symbionts

    Get PDF
    Species of Isorropodon are vesicomyid bivalves for which little information is available regarding host phylogeny and bacterial symbioses. In this study we investigated the symbioses in three Isorropodon species from three cold seep areas: Isorropodon bigoti (Gulf of Guinea), Isorropodon megadesmus (Gulf of Cadiz) and Isorropodon perplexum (Eastern Mediterranean). Analysis of bacterial 16S ribosomal RNA gene sequences demonstrated that each vesicomyid species harbours a single symbiont phylotype, that symbionts from the three species cluster together, and that they are closely related to other known vesicomyid symbionts. These results are confirmed by other marker genes (encoding 23S rRNA and APS reductase) and by fluorescence in situ hybridization. Due to their extended depth range and transoceanic distribution Isorropodon species are interesting examples to further study evolutionary processes in bivalve hosts and their associated symbionts

    Non-performing loans at the dawn of IFRS 9: regulatory and accounting treatment of asset quality

    Get PDF
    Asset quality is a key indicator of sound banking. However, it is difficult for banking regulators and investors to assess it in the absence of a common, cross-border scheme to classify assets. Currently no standard is applied universally to categorise loans, the most sizeable asset on banks’ balance sheets. As a corollary, definitions of nonperforming loans (NPLs), despite recent steps towards greater harmonisation, continue to vary between jurisdictions. This paper offers a comprehensive analysis of NPLs and considers variations in the treatment of NPLs across countries, accounting regimes, and firms. The paper relies on a multi-disciplinary perspective and addresses legal, accounting, economic and strategic aspects of loan loss provisioning (LLP) and NPLs. A harmonised approach to NPL recognition is particularly desirable, in view of the fact that IFRS 9, the new accounting standard on loan loss provisioning, will be mandatory from January 2018. IFRS 9 changes the relationship between NPLs and provisions, by relying on greater judgement to determine provisions. The potential for divergence makes the need for comparable indicators against which to assess asset quality all the greater

    Helicobacter pylori's Unconventional Role in Health and Disease

    Get PDF
    The discovery of a bacterium, Helicobacter pylori, that is resident in the human stomach and causes chronic disease (peptic ulcer and gastric cancer) was radical on many levels. Whereas the mouth and the colon were both known to host a large number of microorganisms, collectively referred to as the microbiome, the stomach was thought to be a virtual Sahara desert for microbes because of its high acidity. We now know that H. pylori is one of many species of bacteria that live in the stomach, although H. pylori seems to dominate this community. H. pylori does not behave as a classical bacterial pathogen: disease is not solely mediated by production of toxins, although certain H. pylori genes, including those that encode exotoxins, increase the risk of disease development. Instead, disease seems to result from a complex interaction between the bacterium, the host, and the environment. Furthermore, H. pylori was the first bacterium observed to behave as a carcinogen. The innate and adaptive immune defenses of the host, combined with factors in the environment of the stomach, apparently drive a continuously high rate of genomic variation in H. pylori. Studies of this genetic diversity in strains isolated from various locations across the globe show that H. pylori has coevolved with humans throughout our history. This long association has given rise not only to disease, but also to possible protective effects, particularly with respect to diseases of the esophagus. Given this complex relationship with human health, eradication of H. pylori in nonsymptomatic individuals may not be the best course of action. The story of H. pylori teaches us to look more deeply at our resident microbiome and the complexity of its interactions, both in this complex population and within our own tissues, to gain a better understanding of health and disease

    Bacterial Acquisition in Juveniles of Several Broadcast Spawning Coral Species

    Get PDF
    Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to identify species-specific patterns. Localization of bacteria in gametes and larvae of corals presents an opportunity for determining when bacterial-coral associations are initiated and whether they are dynamic throughout early development. This study focuses on the early onset of bacterial associations in the mass spawning corals Montastraea annularis, M. franksi, M. faveolata, Acropora palmata, A. cervicornis, Diploria strigosa, and A. humilis. The presence of bacteria and timing of bacterial colonization was evaluated in gametes, swimming planulae, and newly settled polyps by fluorescence in situ hybridization (FISH) using general eubacterial probes and laser-scanning confocal microscopy. The coral species investigated in this study do not appear to transmit bacteria via their gametes, and bacteria are not detectable in or on the corals until after settlement and metamorphosis. This study suggests that mass-spawning corals do not acquire, or are not colonized by, detectable numbers of bacteria until after larval settlement and development of the juvenile polyp. This timing lays the groundwork for developing and testing new hypotheses regarding general regulatory mechanisms that control bacterial colonization and infection of corals, and how interactions among bacteria and juvenile polyps influence the structure of bacterial assemblages in corals

    Association of IL1B -511C/-31T haplotype and Helicobacter pylori vacA genotypes with gastric ulcer and chronic gastritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association between proinflammatory cytokine gene polymorphisms and gastric diseases related to <it>Helicobacter pylori </it>varies by population and geographic area.</p> <p>Our objective was to determine if the <it>IL-1B </it>-<it>511 T>C </it>and -<it>31 C>T </it>polymorphisms and <it>H. pylori vacA </it>genotypes are associated with risk of chronic gastritis and gastric ulcer in a Mexican population.</p> <p>Methods</p> <p>We conducted endoscopic studies in 128 patients with symptoms of dyspepsia. We took two biopsies from the body, antrum, or ulcer edge from each patient, and classified our histopathological findings according to the Sydney System. <it>H. pylori </it>infection and <it>vacA </it>genotyping were accomplished via PCR from total DNA of the gastric biopsies. We confirmed the presence of anti-<it>H. pylori </it>serum IgG and IgM in 102 control subjects. In both case subjects and control subjects, the <it>IL-1B </it>-<it>511 T>C </it>polymorphism was genotyped by PCR-RFLPs and the <it>IL-1B -31 C>T </it>polymorphism was genotyped by pyrosequencing.</p> <p>Results</p> <p>Sixty-two point seven (62.7%) of the 102 control subjects were <it>H. pylori-</it>seropositive. Among the case subjects, 100 were diagnosed with chronic gastritis and 28 with gastric ulcer. We found that 77% of the patients with chronic gastritis and 85.7% of the patients with gastric ulcer were <it>H. pylori-</it>positive. The predominant <it>H. pylori </it>genotype was <it>vacA s1m1 </it>(58.4%) and the most frequent subtype was <it>vacA s1</it>. The -<it>511 TC</it>, (rs16944 -511 T>C) genotype and the -<it>511C </it>allele were associated with chronic gastritis (OR = 3.1, 95% CI = 1.4-6.8 and OR = 3.0, 95% CI = 1.4-6.0, respectively). The subjects carrying -<it>31T </it>(rs1143627 -31 C>T) were found to be at a higher risk of having chronic gastritis (OR = 2.8, 95% CI = 1.3-5.8). The <it>IL-1B </it>-<it>511C/-31T </it>haplotype was associated with chronic gastritis (OR = 2.1, 95% CI = 1.2-3.8) but not with gastric ulcer.</p> <p>Conclusions</p> <p>The <it>H. pylori vacA </it>genotypes identified herein were similar to those reported for other regions of Mexico. The <it>vacA s1m1 </it>genotype was not associated with gastric ulcer. In the southern Mexican population, the <it>IL-1B -511C </it>and -<it>31T </it>alleles and the -<it>511C/-31T </it>and -<it>511T/-31T </it>haplotypes are associated with increased risk of chronic gastritis and gastric ulcer.</p

    Helicobacter pylori cag-Pathogenicity Island-Dependent Early Immunological Response Triggers Later Precancerous Gastric Changes in Mongolian Gerbils

    Get PDF
    Infection with Helicobacter pylori, carrying a functional cag type IV secretion system (cag-T4SS) to inject the Cytotoxin associated antigen (CagA) into gastric cells, is associated with an increased risk for severe gastric diseases in humans. Here we studied the pathomechanism of H. pylori and the role of the cag-pathogenicity island (cag-PAI) for the induction of gastric ulcer and precancerous conditions over time (2–64 weeks) using the Mongolian gerbil model. Animals were challenged with H. pylori B128 (WT), or an isogenic B128ΔcagY mutant-strain that produces CagA, but is unable to translocate it into gastric cells. H. pylori colonization density was quantified in antrum and corpus mucosa separately. Paraffin sections were graded for inflammation and histological changes verified by immunohistochemistry. Physiological and inflammatory markers were quantitated by RIA and RT-PCR, respectively. An early cag-T4SS-dependent inflammation of the corpus mucosa (4–8 weeks) occurred only in WT-infected animals, resulting in a severe active and chronic gastritis with a significant increase of proinflammatory cytokines, mucous gland metaplasia, and atrophy of the parietal cells. At late time points only WT-infected animals developed hypochlorhydria and hypergastrinemia in parallel to gastric ulcers, gastritis cystica profunda, and focal dysplasia. The early cag-PAI-dependent immunological response triggers later physiological and histopathological alterations towards gastric malignancies
    • 

    corecore