1,384 research outputs found

    Reconstructing Deconstruction: High-Velocity Cloud Distance Through Disruption Morphology

    Full text link
    We present Arecibo L-band Feed Array 21-cm observations of a sub-complex of HVCs at the tip of the Anti-Center Complex. These observations show morphological details that point to interaction with the ambient halo medium and differential drag within the cloud sub-complex. We develop a new technique for measuring cloud distances, which relies upon these observed morphological and kinematic characteristics, and show that it is consistent with H-alpha distances. These results are consistent with distances to HVCs and halo densities derived from models in which HVCs are formed from cooling halo gas.Comment: 8 pages, 2 figures, 1 tabe, Accepted to Ap

    Ongoing Galactic Accretion: Simulations and Observations of Condensed Gas in Hot Halos

    Full text link
    Ongoing accretion onto galactic disks has been recently theorized to progress via the unstable cooling of the baryonic halo into condensed clouds. These clouds have been identified as analogous to the High-Velocity Clouds (HVCs) observed in HI in our Galaxy. Here we compare the distribution of HVCs observed around our own Galaxy and extra-planar gas around the Andromeda galaxy to these possible HVC analogs in a simulation of galaxy formation that naturally generates these condensed clouds. We find a very good correspondence between these observations and the simulation, in terms of number, angular size, velocity distribution, overall flux and flux distribution of the clouds. We show that condensed cloud accretion only accounts for ~ 0.2 M_solar / year of the current overall Galactic accretion in the simulations. We also find that the simulated halo clouds accelerate and become more massive as they fall toward the disk. The parameter space of the simulated clouds is consistent with all of the observed HVC complexes that have distance constraints, except the Magellanic Stream which is known to have a different origin. We also find that nearly half of these simulated halo clouds would be indistinguishable from lower-velocity gas and that this effect is strongest further from the disk of the galaxy, thus indicating a possible missing population of HVCs. These results indicate that the majority of HVCs are consistent with being infalling, condensed clouds that are a remnant of Galaxy formation.Comment: 10 pages, 6 figures, ApJ Accepted. Some changes to techniqu

    The GALFA-HI Compact Cloud Catalog

    Full text link
    We present a catalog of 1964 isolated, compact neutral hydrogen clouds from the Galactic Arecibo L-Band Feed Array Survey Data Release One (GALFA-HI DR1). The clouds were identified by a custom machine-vision algorithm utilizing Difference of Gaussian kernels to search for clouds smaller than 20'. The clouds have velocities typically between |VLSR| = 20-400 km/s, linewidths of 2.5-35 km/s, and column densities ranging from 1 - 35 x 10^18 cm^-2. The distances to the clouds in this catalog may cover several orders of magnitude, so the masses may range from less than a Solar mass for clouds within the Galactic disc, to greater than 10^4 Solar Masses for HVCs at the tip of the Magellanic Stream. To search for trends, we separate the catalog into five populations based on position, velocity, and linewidth: high velocity clouds (HVCs); galaxy candidates; cold low velocity clouds (LVCs); warm, low positive-velocity clouds in the third Galactic Quadrant; and the remaining warm LVCs. The observed HVCs are found to be associated with previously-identified HVC complexes. We do not observe a large population of isolated clouds at high velocities as some models predict. We see evidence for distinct histories at low velocities in detecting populations of clouds corotating with the Galactic disc and a set of clouds that is not corotating.Comment: 34 Pages, 9 Figures, published in ApJ (2012, ApJ, 758, 44), this version has the corrected fluxes and corresponding flux histogram and masse

    An Accurate Distance to High-Velocity Cloud Complex C

    Full text link
    We report an accurate distance of d = 10+/-2.5kpc to the high-velocity cloud Complex C. Using high signal-to-noise Keck/HIRES spectra of two horizontal-branch stars, we have detected CaII K absorption lines from the cloud. Significant non-detections toward a further 3 stars yield robust lower distance limits. The resulting HI mass of Complex C is 4.9^{+2.8}_{-2.2} x 10^6 Msun; a total mass of 8.2^{+4.6}_{-2.6} x 10^6 Msun is implied, after corrections for helium and ionization. At 10kpc, Complex C has physical dimensions 3x15 kpc, and if it is as thick as it is wide, then the average density is log ~ -2.5. We estimate the contribution of Complex C to the mass influx may be as high as ~0.14 Msun/yr.Comment: Resubmitted to ApJ. 8 figure

    Systematic review of high-intensity focused ultrasound ablation in the treatment of breast cancer

    Get PDF
    Background A systematic review was undertaken to assess the clinical efficacy of non-invasive high-intensity focused ultrasound (HIFU) ablation in the treatment of breast cancer. Methods MEDLINE/PubMed library databases were used to identify all studies published up to December 2013 that evaluated the role of HIFU ablation in the treatment of breast cancer. Studies were eligible if they were performed on patients with breast cancer and objectively recorded at least one clinical outcome measure of response (imaging, histopathological or cosmetic) to HIFU treatment. Results Nine studies fulfilled the inclusion criteria. The absence of tumour or residual tumour after treatment was reported for 95·8 per cent of patients (160 of 167). No residual tumour was found in 46·2 per cent (55 of 119; range 17-100 per cent), less than 10 per cent residual tumour in 29·4 per cent (35 of 119; range 0-53 per cent), and between 10 and 90 per cent residual tumour in 22·7 per cent (27 of 119; range 0-60 per cent). The most common complication associated with HIFU ablation was pain (40·1 per cent) and less frequently oedema (16·8 per cent), skin burn (4·2 per cent) and pectoralis major injury (3·6 per cent). MRI showed an absence of contrast enhancement after treatment in 82 per cent of patients (31 of 38; range 50-100 per cent), indicative of coagulative necrosis. Correlation of contrast enhancement on pretreatment and post-treatment MRI successfully predicted the presence of residual disease. Conclusion HIFU treatment can induce coagulative necrosis in breast cancers. Complete ablation has not been reported consistently on histopathology and no imaging modality has been able confidently to predict the percentage of complete ablation. Consistent tumour and margin necrosis with reliable follow-up imaging are required before HIFU ablation can be evaluated within large, prospective clinical trials. Many questions remai

    Correlation dynamics between electrons and ions in the fragmentation of D2_2 molecules by short laser pulses

    Full text link
    We studied the recollision dynamics between the electrons and D2+_2^+ ions following the tunneling ionization of D2_2 molecules in an intense short pulse laser field. The returning electron collisionally excites the D2+_2^+ ion to excited electronic states from there D2+_2^+ can dissociate or be further ionized by the laser field, resulting in D+^+ + D or D+^+ + D+^+, respectively. We modeled the fragmentation dynamics and calculated the resulting kinetic energy spectrum of D+^+ to compare with recent experiments. Since the recollision time is locked to the tunneling ionization time which occurs only within fraction of an optical cycle, the peaks in the D+^+ kinetic energy spectra provides a measure of the time when the recollision occurs. This collision dynamics forms the basis of the molecular clock where the clock can be read with attosecond precision, as first proposed by Corkum and coworkers. By analyzing each of the elementary processes leading to the fragmentation quantitatively, we identified how the molecular clock is to be read from the measured kinetic energy spectra of D+^+ and what laser parameters be used in order to measure the clock more accurately.Comment: 13 pages with 14 figure

    Measurement of mechanical vibrations excited in aluminium resonators by 0.6 GeV electrons

    Get PDF
    We present measurements of mechanical vibrations induced by 0.6 GeV electrons impinging on cylindrical and spherical aluminium resonators. To monitor the amplitude of the resonator's vibrational modes we used piezoelectric ceramic sensors, calibrated by standard accelerometers. Calculations using the thermo-acoustic conversion model, agree well with the experimental data, as demonstrated by the specific variation of the excitation strengths with the absorbed energy, and with the traversing particles' track positions. For the first longitudinal mode of the cylindrical resonator we measured a conversion factor of 7.4 +- 1.4 nm/J, confirming the model value of 10 nm/J. Also, for the spherical resonator, we found the model values for the L=2 and L=1 mode amplitudes to be consistent with our measurement. We thus have confirmed the applicability of the model, and we note that calculations based on the model have shown that next generation resonant mass gravitational wave detectors can only be expected to reach their intended ultra high sensitivity if they will be shielded by an appreciable amount of rock, where a veto detector can reduce the background of remaining impinging cosmic rays effectively.Comment: Tex-Article with epsfile, 34 pages including 13 figures and 5 tables. To be published in Rev. Scient. Instr., May 200

    Entanglement and Timing-Based Mechanisms in the Coherent Control of Scattering Processes

    Full text link
    The coherent control of scattering processes is considered, with electron impact dissociation of H2+_2^+ used as an example. The physical mechanism underlying coherently controlled stationary state scattering is exposed by analyzing a control scenario that relies on previously established entanglement requirements between the scattering partners. Specifically, initial state entanglement assures that all collisions in the scattering volume yield the desirable scattering configuration. Scattering is controlled by preparing the particular internal state wave function that leads to the favored collisional configuration in the collision volume. This insight allows coherent control to be extended to the case of time-dependent scattering. Specifically, we identify reactive scattering scenarios using incident wave packets of translational motion where coherent control is operational and initial state entanglement is unnecessary. Both the stationary and time-dependent scenarios incorporate extended coherence features, making them physically distinct. From a theoretical point of view, this work represents a large step forward in the qualitative understanding of coherently controlled reactive scattering. From an experimental viewpoint, it offers an alternative to entanglement-based control schemes. However, both methods present significant challenges to existing experimental technologies

    Theory of Cylindrical Tubules and Helical Ribbons of Chiral Lipid Membranes

    Full text link
    We present a general theory for the equilibrium structure of cylindrical tubules and helical ribbons of chiral lipid membranes. This theory is based on a continuum elastic free energy that permits variations in the direction of molecular tilt and in the curvature of the membrane. The theory shows that the formation of tubules and helical ribbons is driven by the chirality of the membrane. Tubules have a first-order transition from a uniform state to a helically modulated state, with periodic stripes in the tilt direction and ripples in the curvature. Helical ribbons can be stable structures, or they can be unstable intermediate states in the formation of tubules.Comment: 43 pages, including 12 postscript figures, uses REVTeX 3.0 and epsf.st

    Cold gas in massive early-type galaxies: The case of NGC 1167

    Get PDF
    We present a study of the morphology and kinematics of the neutral hydrogen in the gas-rich (M_HI=1.5x10^{10}Msun), massive early-type galaxy NGC 1167, which was observed with the Westerbork Synthesis Radio Telescope (WSRT). The HI is located in a 160kpc disk (~3xD_25) and has low surface density (<2Msun pc^{-2}). The disk shows regular rotation for r<65kpc but several signs of recent and ongoing interaction and merging with fairly massive companions are observed. No population of cold gas clouds is observed - in contrast to what is found in some spiral galaxies. This suggests that currently the main mechanism bringing in cold gas to the disk is the accretion of fairly massive satellite galaxies, rather than the accretion of a large number of small gas clumps. NGC 1167 is located in a (gas-) rich environment: we detect eight companions with a total HI mass of ~6x10^9Msun within a projected distance of 350kpc. Deep optical images show a disrupted satellite at the northern edge of the HI disk. The observed rotation curve shows a prominent bump of about 50km/s (in the plane of the disk) at r=1.3xR_25. This feature in the rotation curve occurs at the radius where the HI surface density drops significantly and may be due to large-scale streaming motions in the disk. We suspect that both the streaming motions and the HI density distribution are the result of the interaction/accretion with the disrupted satellite. Like in other galaxies with wiggles and bumps in the rotation curve, HI scaling describes the observed rotation curve best. We suggest that interactions create streaming motions and features in the HI density distribution and that this is the reason for the success of HI scaling in fitting such rotation curves.Comment: 17 pages, 11 figures; A&A in pres
    corecore