142 research outputs found

    Técnica de criação de Thyrinteina arnobia (Lepdoptera: Geometridae).

    Get PDF
    Técnica de Criação deThyrinteina arnobia (Lepidoptera: Geometridae); A Praga; Substrato Alimentar para a Fase Larval; Sistema para Criação da Fase Larval; Sistema para Manutenção de Fases de Pré-Pupa e Pupa; Sistema de Manutenção de Adultos e de Oviposição.bitstream/item/24261/1/DOC2010105.pdfDocumento on-line

    HAMAP in 2015: updates to the protein family classification and annotation system.

    Get PDF
    HAMAP (High-quality Automated and Manual Annotation of Proteins-available at http://hamap.expasy.org/) is a system for the automatic classification and annotation of protein sequences. HAMAP provides annotation of the same quality and detail as UniProtKB/Swiss-Prot, using manually curated profiles for protein sequence family classification and expert curated rules for functional annotation of family members. HAMAP data and tools are made available through our website and as part of the UniRule pipeline of UniProt, providing annotation for millions of unreviewed sequences of UniProtKB/TrEMBL. Here we report on the growth of HAMAP and updates to the HAMAP system since our last report in the NAR Database Issue of 2013. We continue to augment HAMAP with new family profiles and annotation rules as new protein families are characterized and annotated in UniProtKB/Swiss-Prot; the latest version of HAMAP (as of 3 September 2014) contains 1983 family classification profiles and 1998 annotation rules (up from 1780 and 1720). We demonstrate how the complex logic of HAMAP rules allows for precise annotation of individual functional variants within large homologous protein families. We also describe improvements to our web-based tool HAMAP-Scan which simplify the classification and annotation of sequences, and the incorporation of an improved sequence-profile search algorithm

    A classification-based framework for predicting and analyzing gene regulatory response

    Get PDF
    BACKGROUND: We have recently introduced a predictive framework for studying gene transcriptional regulation in simpler organisms using a novel supervised learning algorithm called GeneClass. GeneClass is motivated by the hypothesis that in model organisms such as Saccharomyces cerevisiae, we can learn a decision rule for predicting whether a gene is up- or down-regulated in a particular microarray experiment based on the presence of binding site subsequences ("motifs") in the gene's regulatory region and the expression levels of regulators such as transcription factors in the experiment ("parents"). GeneClass formulates the learning task as a classification problem — predicting +1 and -1 labels corresponding to up- and down-regulation beyond the levels of biological and measurement noise in microarray measurements. Using the Adaboost algorithm, GeneClass learns a prediction function in the form of an alternating decision tree, a margin-based generalization of a decision tree. METHODS: In the current work, we introduce a new, robust version of the GeneClass algorithm that increases stability and computational efficiency, yielding a more scalable and reliable predictive model. The improved stability of the prediction tree enables us to introduce a detailed post-processing framework for biological interpretation, including individual and group target gene analysis to reveal condition-specific regulation programs and to suggest signaling pathways. Robust GeneClass uses a novel stabilized variant of boosting that allows a set of correlated features, rather than single features, to be included at nodes of the tree; in this way, biologically important features that are correlated with the single best feature are retained rather than decorrelated and lost in the next round of boosting. Other computational developments include fast matrix computation of the loss function for all features, allowing scalability to large datasets, and the use of abstaining weak rules, which results in a more shallow and interpretable tree. We also show how to incorporate genome-wide protein-DNA binding data from ChIP chip experiments into the GeneClass algorithm, and we use an improved noise model for gene expression data. RESULTS: Using the improved scalability of Robust GeneClass, we present larger scale experiments on a yeast environmental stress dataset, training and testing on all genes and using a comprehensive set of potential regulators. We demonstrate the improved stability of the features in the learned prediction tree, and we show the utility of the post-processing framework by analyzing two groups of genes in yeast — the protein chaperones and a set of putative targets of the Nrg1 and Nrg2 transcription factors — and suggesting novel hypotheses about their transcriptional and post-transcriptional regulation. Detailed results and Robust GeneClass source code is available for download from

    Collaborative annotation of genes and proteins between UniProtKB/Swiss-Prot and dictyBase

    Get PDF
    UniProtKB/Swiss-Prot, a curated protein database, and dictyBase, the Model Organism Database for Dictyostelium discoideum, have established a collaboration to improve data sharing. One of the major steps in this effort was the ‘Dicty annotation marathon’, a week-long exercise with 30 annotators aimed at achieving a major increase in the number of D. discoideum proteins represented in UniProtKB/Swiss-Prot. The marathon led to the annotation of over 1000 D. discoideum proteins in UniProtKB/Swiss-Prot. Concomitantly, there were a large number of updates in dictyBase concerning gene symbols, protein names and gene models. This exercise demonstrates how UniProtKB/Swiss-Prot can work in very close cooperation with model organism databases and how the annotation of proteins can be accelerated through those collaborations

    The IntAct molecular interaction database in 2012

    Get PDF
    IntAct is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. Two levels of curation are now available within the database, with both IMEx-level annotation and less detailed MIMIx-compatible entries currently supported. As from September 2011, IntAct contains approximately 275 000 curated binary interaction evidences from over 5000 publications. The IntAct website has been improved to enhance the search process and in particular the graphical display of the results. New data download formats are also available, which will facilitate the inclusion of IntAct's data in the Semantic Web. IntAct is an active contributor to the IMEx consortium (http://www.imexconsortium.org). IntAct source code and data are freely available at http://www.ebi.ac.uk/intact

    Mitochondrial Dysfunction Links Ceramide Activated HRK Expression and Cell Death

    Get PDF
    Cell death is an essential process in normal development and homeostasis. In eyes, corneal epithelial injury leads to the death of cells in underlying stroma, an event believed to initiate corneal wound healing. The molecular basis of wound induced corneal stromal cell death is not understood in detail. Studies of others have indicated that ceramide may play significant role in stromal cell death following LASIK surgery. We have undertaken the present study to investigate the mechanism of death induced by C6 ceramide in cultures of human corneal stromal (HCSF) fibroblasts.Cultures of HCSF were established from freshly excised corneas. Cell death was induced in low passage (p<4) cultures of HCSF by treating the cells with C6 ceramide or C6 dihydroceramide as a control. Cell death was assessed by Live/Dead cell staining with calcein AM and ethidium homodimer-1 as well as Annexin V staining, caspase activation and TUNEL staining Mitochondrial dysfunction was assessed by Mito Sox Red, JC-1 and cytochrome C release Gene expression was examined by qPCR and western blotting.Our data demonstrate ceramide caused mitochondrial dysfunction as evident from reduced MTT staining, cyto c release from mitochondria, enhanced generation of ROS, and loss in mitochondrial membrane potential (ΔΨm). Cell death was evident from Live -Dead Cell staining and the inability to reestablish cultures from detached cells. Ceramide induced the expression of the harikari gene(HRK) and up-regulated JNK phosphorylation. In ceramide treated cells HRK was translocated to mitochondria, where it was found to interact with mitochondrial protein p32. The data also demonstrated HRK, p32 and BAD interaction. Ceramide-induced expression of HRK, mitochondrial dysfunction and cell death were reduced by HRK knockdown with HRK siRNA.Our data document that ceramide is capable of inducing death of corneal stromal fibroblasts through the induction of HRK mediated mitochondria dysfunction

    Gis1 and Rph1 Regulate Glycerol and Acetate Metabolism in Glucose Depleted Yeast Cells

    Get PDF
    Aging in organisms as diverse as yeast, nematodes, and mammals is delayed by caloric restriction, an effect mediated by the nutrient sensing TOR, RAS/cAMP, and AKT/Sch9 pathways. The transcription factor Gis1 functions downstream of these pathways in extending the lifespan of nutrient restricted yeast cells, but the mechanisms involved are still poorly understood. We have used gene expression microarrays to study the targets of Gis1 and the related protein Rph1 in different growth phases. Our results show that Gis1 and Rph1 act both as repressors and activators, on overlapping sets of genes as well as on distinct targets. Interestingly, both the activities and the target specificities of Gis1 and Rph1 depend on the growth phase. Thus, both proteins are associated with repression during exponential growth, targeting genes with STRE or PDS motifs in their promoters. After the diauxic shift, both become involved in activation, with Gis1 acting primarily on genes with PDS motifs, and Rph1 on genes with STRE motifs. Significantly, Gis1 and Rph1 control a number of genes involved in acetate and glycerol formation, metabolites that have been implicated in aging. Furthermore, several genes involved in acetyl-CoA metabolism are downregulated by Gis1
    corecore