94 research outputs found

    Simultaneous cyclization and derivatization of peptides using cyclopentenediones

    Get PDF
    Unprotected linear peptides containing N-terminal cysteines and another cysteine residue can be simultaneously cyclized and derivatized using 2,2-disubstituted cyclopentenediones. High yields of cyclic peptide conjugates may be obtained in short reaction times using only a slight excess of the cyclopentenedione moiety under TEMPO catalysis and in the presence of LiCl

    Stepwise Solid‐Phase Synthesis of Nucleopeptides

    Full text link
    Phosphodiester‐linked peptide‐oligonucleotide conjugates (nucleopeptides) are obtained by stepwise solid‐phase procedures. The peptide is first assembled on a suitably derivatized solid matrix and the oligonucleotide is subsequently elongated at the free hydroxyl group of the linking amino acid. Temporary acid‐labile and permanent base‐labile protecting groups are combined. Careful choice of the protection scheme is required to prevent and minimize side reactions that may degrade the target molecule.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152587/1/cpnc0422.pd

    Structure and Stability of a Dimeric G-Quadruplex Formed by Cyclic Oligonucleotides

    Get PDF
    We have studied the structure and stability of the cyclic dodecamer d<pGGGTTAGGGTTA>, containing two copies of the human telomeric repeat. In the presence of sodium, NMR data are consistent with a dimeric structure of the molecule in which two cycles self-associate forming a quadruplex with three guanine tetrads connected by edgewise loops. The two macrocycles are arranged in a parallel way, and the dimeric structure exhibits a high melting temperature. These results indicate that cyclization of the phosphodiester chain does not prevent quadruplex formation, although it affects the global topology of the quadruplex

    Straightforward synthesis of cyclic and bicyclic peptides

    Get PDF
    Cyclic peptide architectures can be easily synthesized from cysteine-containing peptides with appending maleimides, free or protected, through an intramolecular Michael-type reaction. After peptide assembly, the peptide can cyclize either during the trifluoroacetic acid treatment, if the maleimide is not protected, or upon deprotection of the maleimide. The combination of free and protected maleimide moieties and two orthogonally protected cysteines gives access to structurally different bicyclic peptides with isolated or fused cycles

    Orthogonal protection of peptides and peptoids for cyclization by the thiol-ene reaction and conjugation

    Get PDF
    Cyclic peptides and peptoids were prepared using the thiol-ene Michael-type reaction. The linear precursors were provided with additional functional groups allowing for subsequent conjugation: an orthogonally protected thiol, a protected maleimide, or an alkyne. The functional group for conjugation was placed either within the cycle or in an external position. The click reactions employed for conjugation with suitably derivatized nucleoside or oligonucleotides were either cycloadditions (Diels-Alder, Cu(I)-catalyzed azide-alkyne) or the same Michael-type reaction as for cyclization

    Diels-Alder cycloadditions in water for the straightforward preparation of peptide–oligonucleotide conjugates

    Get PDF
    The Diels-Alder reaction between diene-modified oligonucleotides and maleimide-derivatized peptides afforded peptide–oligonucleotide conjugates with high purity and yield. Synthesis of the reagents was easily accomplished by on-column derivatization of the corresponding peptides and oligonucleotides. The cycloaddition reaction was carried out in mild conditions, in aqueous solution at 37°C. The speed of the reaction was found to vary depending on the size of the reagents, but it can be completed in 8–10 h by reacting the diene-oligonucleotide with a small excess of maleimide-peptide

    Exploiting protected maleimides to modify oligonucleotides, peptides and peptide nucleic acids

    Get PDF
    This manuscript reviews the possibilities offered by 2,5-dimethylfuran-protected maleimides. Suitably derivatized building blocks incorporating the exo Diels-Alder cycloadduct can be introduced at any position of oligonucleotides, peptide nucleic acids, peptides and peptoids, making use of standard solid-phase procedures. Maleimide deprotection takes place upon heating, which can be followed by either Michael-type or Diels-Alder click conjugation reactions. However, the one-pot procedure in which maleimide deprotection and conjugation are simultaneously carried out provides the target conjugate more quickly and, more importantly, in better yield. This procedure is compatible with conjugates involving oligonucleotides, peptides and peptide nucleic acids. A variety of cyclic peptides and oligonucleotides can be obtained from peptide and oligonucleotide precursors incorporating protected maleimides and thiols

    Self-association of short DNA loops through minor groove C:G:G:C tetrads

    Get PDF
    In addition to the better known guanine-quadruplex,four-stranded nucleic acid structures can be formed by tetrads resulting from the association of Watson–Crick base pairs. When such association occurs through the minor groove side of the base pairs, the resulting structure presents distinctive features, clearly different from quadruplex structures containing planar G-tetrads. Although we have found this unusual DNA motif in a number of cyclic oligonucleotides, this is the first time that this DNA motif is found in linear oligonucleotides in solution, demonstrating that cyclization is not required to stabilize minor groove tetrads in solution. In this article, we have determined the solution structure of two linear octamers of sequence d(TGCTTCGT) and d(TCGTTGCT), and their cyclic analogue d, utilizing 2D NMR spectroscopy and restrained molecular dynamics. These three molecules self-associate forming symmetric dimers stabilized by a novel kind of minor groove C:G:G:C tetrad, in which the pattern of hydrogen bonds differs from previously reported ones. We hypothesize that these quadruplex structures can be formed by many different DNA sequences, but its observation in linear oligonucleotides is usually hampered by competing Watson–Crick duplexes.Peer reviewe

    Retro-1-oligonucleotide conjugates. Synthesis and biological evaluation

    Get PDF
    Addition of small molecule Retro-1 has been described to enhance antisense and splice switching oligonucleotides. With the aim of assessing the effect of covalently linking Retro-1 to the biologically active oligonucleotide, three different derivatives of Retro-1 were prepared that incorporated a phosphoramidite group, a thiol or a 1,3-diene, respectively. Retro-1-oligonucleotide conjugates were assembled both on-resin (coupling of the phosphoramidite) and from reactions in solution (Michael-type thiol-maleimide reaction and Diels-Alder cycloaddition). Splice switching assays with the resulting conjugates showed that they were active but that they provided little advantage over the unconjugated oligonucleotide in the well-known HeLa Luc705 reporter system
    • 

    corecore