3,096 research outputs found

    Morphology of galaxies with quiescent recent assembly history in a Lambda-CDM universe

    Get PDF
    The standard disc formation scenario postulates that disc forms as the gas cools and flows into the centre of the dark matter halo, conserving the specific angular momentum. Major mergers have been shown to be able to destroy or highly perturb the disc components. More recently, the alignment of the material that is accreted to form the galaxy has been pointed out as a key ingredient to determine galaxy morphology. However, in a hierarchical scenario galaxy formation is a complex process that combines these processes and others in a non-linear way so that the origin of galaxy morphology remains to be fully understood. We aim at exploring the differences in the formation histories of galaxies with a variety of morphology, but quite recent merger histories, to identify which mechanisms are playing a major role. We analyse when minor mergers can be considered relevant to determine galaxy morphology. We also study the specific angular momentum content of the disc and central spheroidal components separately. We used cosmological hydrodynamical simulations that include an effective, physically motivated supernova feedback that is able to regulate the star formation in haloes of different masses. We analysed the morphology and formation history of a sample of 15 galaxies of a cosmological simulation. We performed a spheroid-disc decomposition of the selected galaxies and their progenitor systems. The angular momentum orientation of the merging systems as well as their relative masses were estimated to analyse the role played by orientation and by minor mergers in the determination of the morphology. We found the discs to be formed by conserving the specific angular momentum in accordance with the classical disc formation model. The specific angular momentum of the stellar central spheroid correlates with the dark matter halo angular momentum and determines a power law. AbridgedComment: 10 pages, 9 figures, A&A in pres

    The gas metallicity gradient and the star formation activity of disc galaxies

    Get PDF
    We study oxygen abundance profiles of the gaseous disc components in simulated galaxies in a hierarchical universe. We analyse the disc metallicity gradients in relation to the stellar masses and star formation rates of the simulated galaxies. We find a trend for galaxies with low stellar masses to have steeper metallicity gradients than galaxies with high stellar masses at z ~0. We also detect that the gas-phase metallicity slopes and the specific star formation rate (sSFR) of our simulated disc galaxies are consistent with recently reported observations at z ~0. Simulated galaxies with high stellar masses reproduce the observed relationship at all analysed redshifts and have an increasing contribution of discs with positive metallicity slopes with increasing redshift. Simulated galaxies with low stellar masses a have larger fraction of negative metallicity gradients with increasing redshift. Simulated galaxies with positive or very negative metallicity slopes exhibit disturbed morphologies and/or have a close neighbour. We analyse the evolution of the slope of the oxygen profile and sSFR for a gas-rich galaxy-galaxy encounter, finding that this kind of events could generate either positive and negative gas-phase oxygen profiles depending on their state of evolution. Our results support claims that the determination of reliable metallicity gradients as a function of redshift is a key piece of information to understand galaxy formation and set constrains on the subgrid physics.Comment: 12 pages, 8 figures, accepted MNRA

    Metallicity dependence of HMXB populations

    Get PDF
    High-mass X-ray binaries (HMXBs) might have contributed a non-negligible fraction of the energy feedback to the interstellar and intergalactic media at high redshift, becoming important sources for the heating and ionization history of the Universe. However, the importance of this contribution depends on the hypothesized increase in the number of HMXBs formed in low-metallicity galaxies and in their luminosities. In this work we test the aforementioned hypothesis, and quantify the metallicity dependence of HMXB population properties. We compile from the literature a large set of data on the sizes and X-ray luminosities of HMXB populations in nearby galaxies with known metallicities and star formation rates. We use Bayesian inference to fit simple Monte Carlo models that describe the metallicity dependence of the size and luminosity of the HMXB populations. We find that HMXBs are typically ten times more numerous per unit star formation rate in low-metallicity galaxies (12 + log(O/H) < 8, namely < 20% solar) than in solar-metallicity galaxies. The metallicity dependence of the luminosity of HMXBs is small compared to that of the population size. Our results support the hypothesis that HMXBs are more numerous in low-metallicity galaxies, implying the need to investigate the feedback in the form of X-rays and energetic mass outflows of these high-energy sources during cosmic dawn.Comment: 9 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    Non-parametric morphologies of mergers in the Illustris simulation

    Get PDF
    Indexación: Web of Science; ScopusWe study non-parametric morphologies of mergers events in a cosmological context, using the Illustris project. We produce mock g-band images comparable to observational surveys from the publicly available Illustris simulation idealized mock images at z = 0. We then measure non-parametric indicators: asymmetry, Gini, M-20, clumpiness, and concentration for a set of galaxies with M-* > 10(10) M circle dot. We correlate these automatic statistics with the recent merger history of galaxies and with the presence of close companions. Our main contribution is to assess in a cosmological framework, the empirically derived non-parametric demarcation line and average time- scales used to determine the merger rate observationally. We found that 98 per cent of galaxies above the demarcation line have a close companion or have experienced a recent merger event. On average, merger signatures obtained from the G-M-20 criterion anti- correlate clearly with the elapsing time to the last merger event. We also find that the asymmetry correlates with galaxy pair separation and relative velocity, exhibiting the larger enhancements for those systems with pair separations d < 50 h(-1) kpc and relative velocities V < 350 km s(-1). We find that the G-M-20 is most sensitive to recent mergers (similar to 0.14 Gyr) and to ongoing mergers with stellar mass ratios greater than 0.1. For this indicator, we compute a merger average observability time-scale of similar to 0.2 Gyr, in agreement with previous results and demonstrate that the morphologically derived merger rate recovers the intrinsic total merger rate of the simulation and the merger rate as a function of stellar mass.https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw278

    On the mass assembly of low-mass galaxies in hydrodynamical simulations of structure formation

    Get PDF
    Cosmological hydrodynamical simulations are studied in order to analyse generic trends for the stellar, baryonic and halo mass assembly of low-mass galaxies (M_* < 3 x 10^10 M_sun) as a function of their present halo mass, in the context of the Lambda-CDM scenario and common subgrid physics schemes. We obtain that smaller galaxies exhibit higher specific star formation rates and higher gas fractions. Although these trends are in rough agreement with observations, the absolute values of these quantities tend to be lower than observed ones since z~2. The simulated galaxy stellar mass fraction increases with halo mass, consistently with semi-empirical inferences. However, the predicted correlation between them shows negligible variations up to high z, while these inferences seem to indicate some evolution. The hot gas mass in z=0 halos is higher than the central galaxy mass by a factor of ~1-1.5 and this factor increases up to ~5-7 at z~2 for the smallest galaxies. The stellar, baryonic and halo evolutionary tracks of simulated galaxies show that smaller galaxies tend to delay their baryonic and stellar mass assembly with respect to the halo one. The Supernova feedback treatment included in this model plays a key role on this behaviour albeit the trend is still weaker than the one inferred from observations. At z>2, the overall properties of simulated galaxies are not in large disagreement with those derived from observations.Comment: 19 pages, 12 figures. Accepted for publication in MNRAS: 6th August 2013. First submitted: 7th July 201
    • …
    corecore