28 research outputs found

    Molecular analysis of pancreatic cystic neoplasm in routine clinical practice

    Full text link
    BACKGROUND Cystic pancreatic lesions consist of a wide variety of lesions that are becoming increasingly diagnosed with the growing use of imaging techniques. Of these, mucinous cysts are especially relevant due to their risk of malignancy. However, morphological findings are often suboptimal for their differentiation. Endoscopic ultrasound fine-needle aspiration (EUS-FNA) with molecular analysis has been suggested to improve the diagnosis of pancreatic cysts. AIM To determine the impact of molecular analysis on the detection of mucinous cysts and malignancy. METHODS An 18-month prospective observational study of consecutive patients with pancreatic cystic lesions and an indication for EUS-FNA following European clinical practice guidelines was conducted. These cysts included those > 15 mm with unclear diagnosis, and a change in follow-up or with concerning features in which results might change clinical management. EUS-FNA with cytological, biochemical and glucose and molecular analyses with next-generation sequencing were performed in 36 pancreatic cysts. The cysts were classified as mucinous and non-mucinous by the combination of morphological, cytological and biochemical analyses when surgery was not performed. Malignancy was defined as cytology positive for malignancy, high-grade dysplasia or invasive carcinoma on surgical specimen, clinical or morphological progression, metastasis or death related to neoplastic complications during the 6-mo follow-up period. Next-generation sequencing results were compared for cyst type and malignancy. RESULTS Of the 36 lesions included, 28 (82.4%) were classified as mucinous and 6 (17.6%) as non-mucinous. Furthermore, 5 (13.9%) lesions were classified as malignant. The amount of deoxyribonucleic acid obtained was sufficient for molecular analysis in 25 (69.4%) pancreatic cysts. The amount of intracystic deoxyribonucleic acid was not statistically related to the cyst fluid volume obtained from the lesions. Analysis of KRAS and/or GNAS showed 83.33% [95% confidence interval (CI): 63.34-100] sensitivity, 60% (95%CI: 7.06-100) specificity, 88.24% (95%CI: 69.98-100) positive predictive value and 50% (95%CI: 1.66-98.34) negative predictive value (P = 0.086) for the diagnosis of mucinous cystic lesions. Mutations in KRAS and GNAS were found in 2/5 (40%) of the lesions classified as non-mucinous, thus recategorizing those lesions as mucinous neoplasms, which would have led to a modification of the follow-up plan in 8% of the cysts in which molecular analysis was successfully performed. All 4 (100%) malignant cysts in which molecular analysis could be performed had mutations in KRAS and/or GNAS, although they were not related to malignancy (P > 0.05). None of the other mutations analyzed could detect mucinous or malignant cysts with statistical significance (P > 0.05). CONCLUSION Molecular analysis can improve the classification of pancreatic cysts as mucinous or non-mucinous. Mutations were not able to detect malignant lesion

    Matrigel-embedded 3D culture of Huh-7 cells as a hepatocyte-like polarized system to study hepatitis C virus cycle

    No full text
    Hepatocytes are highly polarized cells where intercellular junctions, including tight junctions (TJs), determine the polarity. Recently, the TJ-associated proteins claudin-1 and occludin have been implicated in hepatitis C virus (HCV) entry and spread. Nevertheless, cell line-based experimental systems that exhibit hepatocyte-like polarity and permit robust infection and virion production are not currently available. Thus, we sought to determine whether cell line-based, Matrigel-embedded cultures could be used to study hepatitis C virus (HCV) infection and virion production in a context of hepatocyte-like polarized cells. In contrast to standard bidimensional cultures, Matrigel-cultured Huh-7 cells adopted hepatocyte polarization features forming a continuous network of functional proto-bile canaliculi structures. These 3D cultures supported HCV infection by JFH-1 virus and produced infective viral particles which shifted towards lower densities with higher associated specific infectivity. In conclusion, our findings describe a novel use of Matrigel to study the entire HCV cycle in a more relevant context.CIBERehd; Ministerio de Educación y Ciencia; Agence Nationale pour la Recherche contre le SIDA et les Hépatites Virales (ANRS); European Research Council (ERC-2008-AdG-233130-HEPCENT); FundaciónMutua Madrileña; ISCIII and FIB Hospital Universitario de la PrincesaPeer Reviewe

    Clathrin mediates infectious hepatitis C virus particle egress

    Get PDF
    Although it is well established that hepatitis C virus (HCV) entry into hepatocytes depends on clathrin-mediated endocytosis, the possible roles of clathrin in other steps of the viral cycle remain unexplored. Thus, we studied whether cell culture-derived HCV (HCVcc) exocytosis was altered after clathrin interference. Knockdown of clathrin or the clathrin adaptor AP-1 in HCVccinfected human hepatoma cell cultures impaired viral secretion without altering intracellular HCVcc levels or apolipoprotein B (apoB) and apoE exocytosis. Similar reductions in HCVcc secretion were observed after treatment with specific clathrin and dynamin inhibitors. Furthermore, detergent-free immunoprecipitation assays, neutralization experiments, and immunofluorescence analyses suggested that whereas apoE associated with infectious intracellular HCV precursors in endoplasmic reticulum (ER)-related structures, AP-1 participated in HCVcc egress in a post-ER compartment. Finally, we observed that clathrin and AP-1 knockdown altered the endosomal distribution of HCV core, reducing and increasing its colocalization with early endosome and lysosome markers, respectively. Our data support a model in which nascent HCV particles associate with apoE in the ER and exit cells following a clathrin-dependent transendosomal secretory route.This work was supported in part by the following grants: (i) grant SAF2010-21249 from the Ministerio de Ciencia e Investigación (MCI) to M.L.-C.; (ii) grant SAF2010-19270 from theMCIto P.G.; (iii) Marie Curie Career Integration grant PCIG-9-GA-2011-293664 from the European Union 7th Framework Programme for Research to P.G.; and (iv) FEDER funds via the Spanish Government to projects PI10/00101 and PI13/00159, from the Instituto de Salud Carlos III (ISCIII) Fondo de Investigaciónes Sanitarias (FIS) and the Fundación Mutua Madrileña, to P.L.M. I.B. was financially supported by Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas (CIBERehd), V.G. by FIS (PI10/00101), and F.M.-J. by ISCIII and Fundación para la Investigación Biomédica (FIB) del Hospital Universitario de la Princesa.Peer Reviewe

    Functional Relevance of the Switch of VEGF Receptors/Co-Receptors during Peritoneal Dialysis-Induced Mesothelial to Mesenchymal Transition

    Get PDF
    Vascular endothelial growth factor (VEGF) is up-regulated during mesothelial to mesenchymal transition (MMT) and has been associated with peritoneal membrane dysfunction in peritoneal dialysis (PD) patients. It has been shown that normal and malignant mesothelial cells (MCs) express VEGF receptors (VEGFRs) and co-receptors and that VEGF is an autocrine growth factor for mesothelioma. Hence, we evaluated the expression patterns and the functional relevance of the VEGF/VEGFRs/co-receptors axis during the mesenchymal conversion of MCs induced by peritoneal dialysis. Omentum-derived MCs treated with TGF-β1 plus IL-1β (in vitro MMT) and PD effluent-derived MCs with non-epithelioid phenotype (ex vivo MMT) showed down-regulated expression of the two main receptors Flt-1/VEGFR-1 and KDR/VEGFR-2, whereas the co-receptor neuropilin-1 (Nrp-1) was up-regulated. The expression of the Nrp-1 ligand semaphorin-3A (Sema-3A), a functional VEGF competitor, was repressed throughout the MMT process. These expression pattern changes were accompanied by a reduction of the proliferation capacity and by a parallel induction of the invasive capacity of MCs that had undergone an in vitro or ex vivo MMT. Treatment with neutralizing anti-VEGF or anti-Nrp-1 antibodies showed that these molecules played a relevant role in cellular proliferation only in naïve omentum-derived MCs. Conversely, treatment with these blocking antibodies, as well as with recombinant Sema-3A, indicated that the switched VEGF/VEGFRs/co-receptors axis drove the enhanced invasion capacity of MCs undergoing MMT. In conclusion, the expression patterns of VEGFRs and co-receptors change in MCs during MMT, which in turn would determine their behaviour in terms of proliferation and invasion in response to VEGF. © 2013 Pérez-Lozano et al.SAF2010-21249 from the Ministerio de Economıa y Competitividad; S2010/BMD-2321 from Comunidad Autonoma de Madrid; PI 09/0776 from Fondo de Investigaciones Sanitarias; RETICS 06/0016 (REDinREN, Fondos FEDER, EU)Peer Reviewe

    The Tight Junction-Associated Protein Occludin Is Required for a Postbinding Step in Hepatitis C Virus Entry and Infection▿

    No full text
    The precise mechanisms regulating hepatitis C virus (HCV) entry into hepatic cells remain unknown. However, several cell surface proteins have been identified as entry factors for this virus. Of these molecules, claudin-1, a tight junction (TJ) component, is considered a coreceptor required for HCV entry. Recently, we have demonstrated that HCV envelope glycoproteins (HCVgp) promote structural and functional TJ alterations. Additionally, we have shown that the intracellular interaction between viral E2 glycoprotein and occludin, another TJ-associated protein, could be the cause of the mislocalization of TJ proteins. Herein we demonstrated, by using cell culture-derived HCV particles (HCVcc), that interference of occludin expression markedly reduced HCV infection. Furthermore, our results with HCV pseudotyped particles indicated that occludin, but not other TJ-associated proteins, such as junctional adhesion molecule A or zonula occludens protein 1, was required for HCV entry. Using HCVcc, we demonstrated that occludin did not play an essential role in the initial attachment of HCV to target cells. Surface protein labeling experiments showed that both expression levels and cell surface localization of HCV (co)receptors CD81, scavenger receptor class B type I, and claudin-1 were not affected upon occludin knockdown. In addition, immunofluorescence confocal analysis showed that occludin interference did not affect subcellular distribution of the HCV (co)receptors analyzed. However, HCVgp fusion-associated events were altered after occludin silencing. In summary, we propose that occludin plays an essential role in HCV infection and probably affects late entry events. This observation may provide new insights into HCV infection and related pathogenesis

    Apicobasal Polarity Controls Lymphocyte Adhesion to Hepatic Epithelial Cells

    Get PDF
    Loss of apicobasal polarity is a hallmark of epithelial pathologies. Leukocyte infiltration and crosstalk with dysfunctional epithelial barriers are crucial for the inflammatory response. Here, we show that apicobasal architecture regulates the adhesion between hepatic epithelial cells and lymphocytes. Polarized hepatocytes and epithelium from bile ducts segregate the intercellular adhesion molecule 1 (ICAM-1) adhesion receptor onto their apical, microvilli-rich membranes, which are less accessible by circulating immune cells. Upon cell depolarization, hepatic ICAM-1 becomes exposed and increases lymphocyte binding. Polarized hepatic cells prevent ICAM-1 exposure to lymphocytes by redirecting basolateral ICAM-1 to apical domains. Loss of ICAM-1 polarity occurs in human inflammatory liver diseases and can be induced by the inflammatory cytokine tumor necrosis factor alpha (TNF-α). We propose that adhesion receptor polarization is a parenchymal immune checkpoint that allows functional epithelium to hamper leukocyte binding. This contributes to the haptotactic guidance of leukocytes toward neighboring damaged or chronically inflamed epithelial cells that expose their adhesion machinery

    Expression of pituitary tumor–transforming gene 1 (PTTG1)/securin in hepatitis B virus (HBV)-associated liver diseases: Evidence for an HBV X protein–mediated inhibition of PTTG1 ubiquitination and degradation

    No full text
    5 páginas, 8 figuras.-- et al.Chronic infection with hepatitis B virus (HBV) is strongly associated with hepatocellular carcinoma (HCC), and the viral HBx protein plays a crucial role in the pathogenesis of liver tumors. Because the protooncogene pituitary tumor–transforming gene 1 (PTTG1) is overexpressed in HCC, we investigated the regulation of this protein by HBx. We analyzed PTTG1 expression levels in liver biopsies from patients chronically infected with HBV, presenting different disease stages, and from HBx transgenic mice. PTTG1 was undetectable in biopsies from chronic hepatitis B patients or from normal mouse livers. In contrast, hyperplastic livers from transgenic mice and biopsies from patients with cirrhosis, presented PTTG1 expression which was found mainly in HBx-expressing hepatocytes. PTTG1 staining was further increased in HCC specimens. Experiments in vitro revealed that HBx induced a marked accumulation of PTTG1 protein without affecting its messenger RNA levels. HBx expression promoted the inhibition of PTTG1 ubiquitination, which in turn impaired its degradation by the proteasome. Glutathione S-transferase pull-down and co-immunoprecipitation experiments demonstrated that the interaction between PTTG1 and the Skp1–Cul1–F-box ubiquitin ligase complex (SCF) was partially disrupted, possibly through a mechanism involving protein–protein interactions of HBx with PTTG1 and/or SCF. Furthermore, confocal analysis revealed that HBx colocalized with PTTG1 and Cul1. We propose that HBx promotes an abnormal accumulation of PTTG1, which may provide new insights into the molecular mechanisms of HBV-related pathogenesis of progressive liver disease leading to HCC development.Supported in part by a grant from CIBERehd (funded by ISCIII) (to R. M.-O., M. L.-C., and P. L. M.) and grant SAF2007-61201 from Ministerio de Educación y Ciencia (to M. L.-C.), grant CP03/0020 from ISCIII, and grant SAF2007-60677 from Ministerio de Educación y Ciencia (to P. L. M.). F. M.-J. was supported by ISCIII and Fundación para la Investigación Biomédica del Hospital Universitario de la Princesa. I. B. and S. M.-V. were supported by CIBERehd.Peer reviewe
    corecore