28 research outputs found
Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial
Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt
Pigment nephropathy: novel insights into inflammasome-mediated pathogenesis
Pigment nephropathy is an acute decline in renal function following the deposition of endogenous haem-containing proteins in the kidneys. Haem pigments such as myoglobin and haemoglobin are filtered by glomeruli and absorbed by the proximal tubules. They cause renal vasoconstriction, tubular obstruction, increased oxidative stress and inflammation. Haem is associated with inflammation in sterile and infectious conditions, contributing to the pathogenesis of many disorders such as rhabdomyolysis and haemolytic diseases. In fact, haem appears to be a signalling molecule that is able to activate the inflammasome pathway. Recent studies highlight a pathogenic function for haem in triggering inflammatory responses through the activation of the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome. Among the inflammasome multiprotein complexes, the NLRP3 inflammasome has been the most widely characterized as a trigger of inflammatory caspases and the maturation of interleukin-18 and -1β. In the present review, we discuss the latest evidence on the importance of inflammasome-mediated inflammation in pigment nephropathy. Finally, we highlight the potential role of inflammasome inhibitors in the prophylaxis and treatment of pigment nephropathy
Correction: Ecstasy induces reactive oxygen species, kidney water absorption and rhabdomyolysis in normal rats. Effect of N-acetylcysteine and Allopurinol in oxidative stress and muscle fiber damage.
[This corrects the article DOI: 10.1371/journal.pone.0179199.]
Representative light micrographs of Hematoxylin-Eosin stain.
<p>2a (Ec), 2b (Ec+NAC) and 2c (NAC+Ec) show areas of necrosis (*) and inflammatory infiltrations (macrophages)(arrows). 2d (Allo+Ec) shows no necrosis and slight inflammatory infiltration.</p
Ecstasy induces reactive oxygen species, kidney water absorption and rhabdomyolysis in normal rats. Effect of N-acetylcysteine and Allopurinol in oxidative stress and muscle fiber damage
<div><p>Background</p><p>Ecstasy (Ec) use produces hyperthermia, excessive sweating, intense thirst, an inappropriate antidiuretic hormone secretion (SIADH) and a multisystemic toxicity due to oxidative stress (OS). Intense thirst induces high intake of pure water, which associated with SIADH, usually develops into acute hyponatremia (Hn). As Hn is induced rapidly, experiments to check if Ec acted directly on the Inner Medullary Collecting Ducts (IMCD) of rats were conducted. Rhabdomyolysis and OS were also studied because Ec is known to induce Reactive Oxygen Species (ROS) and tissue damage. To decrease OS, the antioxidant inhibitors N-acetylcysteine (NAC) and Allopurinol (Allo) were used.</p><p>Methods</p><p>Rats were maintained on a lithium (Li) diet to block the Vasopressin action before Ec innoculation. AQP2 (Aquaporin 2), ENaC (Epitheliun Sodium Channel) and NKCC2 (Sodium, Potassium, 2 Chloride) expression were determined by Western Blot in isolated IMCDs. The TBARS (thiobarbituric acid reactive substances) and GSH (reduced form of Glutathione) were determined in the Ec group (6 rats injected with Ec-10mg/kg), in Ec+NAC groups (NAC 100mg/Kg/bw i.p.) and in Allo+Ec groups (Allo 50mg/Kg/i.p.).</p><p>Results</p><p>Enhanced AQP2 expression revealed that Ec increased water transporter expression, decreased by Li diet, but the expression of the tubular transporters did not change. The Ec, Ec+NAC and Allo+Ec results showed that Ec increased TBARS and decreased GSH, showing evidence of ROS occurrence, which was protected by NAC and Allo. Rhabdomyolysis was only protected by Allo.</p><p>Conclusion</p><p>Results showed that Ec induced an increase in AQP2 expression, evidencing another mechanism that might contribute to cause rapid hyponatremia. In addition, they showed that NAC and Allo protected against OS, but only Allo decreased rhabdomyolysis and hyperthermia.</p></div
Western-blot analysis of the water transporter.
<p>Bands 29 and 35-50kDa from AQP2. * p< 0.05 Li x Li+Ec.</p
Representative light micrographs of Hematoxylin-Eosin stain.
<p>2a (Ec), 2b (Ec+NAC) and 2c (NAC+Ec) show areas of necrosis (*) and inflammatory infiltrations (macrophages)(arrows). 2d (Allo+Ec) shows no necrosis and slight inflammatory infiltration.</p