45 research outputs found

    Comparison of 1-year outcome in patients with severe aorta stenosis treated conservatively or by aortic valve replacement or by percutaneous transcatheter aortic valve implantation (data from a multicenter Spanish registry)

    No full text
    The factors that influence decision making in severe aortic stenosis (AS) are unknown. Our aim was to assess, in patients with severe AS, the determinants of management and prognosis in a multicenter registry that enrolled all consecutive adults with severe AS during a 1-month period. One-year follow-up was obtained in all patients and included vital status and aortic valve intervention (aortic valve replacement [AVR] and transcatheter aortic valve implantation [TAVI]). A total of 726 patients were included, mean age was 77.3 ± 10.6 years, and 377 were women (51.8%). The most common management was conservative therapy in 468 (64.5%) followed by AVR in 199 (27.4%) and TAVI in 59 (8.1%). The strongest association with aortic valve intervention was patient management in a tertiary hospital with cardiac surgery (odds ratio 2.7, 95% confidence interval 1.8 to 4.1, p <0.001). The 2 main reasons to choose conservative management were the absence of significant symptoms (136% to 29.1%) and the presence of co-morbidity (128% to 27.4%). During 1-year follow-up, 132 patients died (18.2%). The main causes of death were heart failure (60% to 45.5%) and noncardiac diseases (46% to 34.9%). One-year survival for patients treated conservatively, with TAVI, and with AVR was 76.3%, 94.9%, and 92.5%, respectively, p <0.001. One-year survival of patients treated conservatively in the absence of significant symptoms was 97.1%. In conclusion, most patients with severe AS are treated conservatively. The outcome in asymptomatic patients managed conservatively was acceptable. Management in tertiary hospitals is associated with valve intervention. One-year survival was similar with both interventional strategies

    First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV

    No full text
    International audienceProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/cc beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380±\pm26 mbarns for the 6 GeV/cc setting and 379±\pm35 mbarns for the 7 GeV/cc setting

    Supernova Pointing Capabilities of DUNE

    No full text
    International audienceThe determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on 40^{40}Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping'', as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage

    Supernova Pointing Capabilities of DUNE

    No full text
    International audienceThe determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on 40^{40}Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping'', as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage

    Performance of a modular ton-scale pixel-readout liquid argon time projection chamber

    No full text
    The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations

    Performance of a modular ton-scale pixel-readout liquid argon time projection chamber

    No full text
    International audienceThe Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations

    Performance of a modular ton-scale pixel-readout liquid argon time projection chamber

    No full text
    International audienceThe Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations

    First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV

    No full text
    International audienceProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/cc beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380±\pm26 mbarns for the 6 GeV/cc setting and 379±\pm35 mbarns for the 7 GeV/cc setting
    corecore