2 research outputs found

    Improving the Stability and Efficiency of CuO Photocathodes for Solar Hydrogen Production through Modification with Iron

    Get PDF
    Cupric oxide (CuO) is considered as a promising photocathode material for photo­(electro)­chemical water splitting because of its suitable band gap, low cost related to copper earth abundancy, and straightforward fabrication. The main challenge for the development of practical CuO-based photocathodes for solar hydrogen evolution is to enhance its stability against photocorrosion. In this work, stable and efficient CuO photocathodes have been developed by using a simple and cost-effective methodology. CuO films, composed of nanowires and prepared by chemical oxidation of electrodeposited Cu, develop relatively high photocurrents in 1 M NaOH. However, this photocurrent appears to be partly associated with photocorrosion of CuO. It is significant though that, even unprotected, a faradaic efficiency for hydrogen evolution of ∼45% is attained. The incorporation of iron through an impregnation method, followed by a high-temperature thermal treatment for promoting the external phase transition of the nanowires from CuO to ternary copper iron oxide, was found to provide an improved stability at the expense of photocurrent, which decreases to about one-third of its initial value. In contrast, a faradaic efficiency for hydrogen evolution of ∼100% is achieved even in the absence of co-catalysts, which is ascribable to the favorable band positions of CuO and the iron copper ternary oxide in the core–shell structure of the nanowires

    Toward Tandem Solar Cells for Water Splitting Using Polymer Electrolytes

    Get PDF
    Tandem photoelectrochemical cells, formed by two photoelectrodes with complementary light absorption, have been proposed to be a viable approach for obtaining clean hydrogen. This requires the development of new designs that allow for upscaling, which would be favored by the use of transparent polymer electrolyte membranes (PEMs) instead of conventional liquid electrolytes. This article focuses on the photoelectrochemical performance of a water-splitting tandem cell based on a phosphorus-modified α-Fe<sub>2</sub>O<sub>3</sub> photoanode and on an iron-modified CuO photocathode, with the employment of an alkaline PEM. Such a photoelectrochemical cell works even in the absence of bias, although significant effort should be directed to the optimization of the photoelectrode/PEM interface. In addition, the results reveal that the employment of polymer electrolytes increases the stability of the device, especially in the case of the photocathode
    corecore