82 research outputs found

    The Hamiltonian of the V15_{15} Spin System from first-principles Density-Functional Calculations

    Full text link
    We report first-principles all-electron density-functional based studies of the electronic structure, magnetic ordering and anisotropy for the V15_{15} molecular magnet. From these calculations, we determine a Heisenberg Hamiltonian with four antiferromagnetic and one {\em ferromagnetic} coupling. We perform direct diagonalization to determine the temperature dependence of the susceptibility. This Hamiltonian reproduces the experimentally observed spin SS=1/2 ground state and low-lying SS=3/2 excited state. A small anisotropy term is necessary to account for the temperature independent part of the magnetization curve.Comment: 4 pages in RevTeX format + 2 ps-figures, accepted by PRL Feb. 2001 (previous version was an older version of the paper

    Salt Stress Induces Non-CG Methylation in Coding Regions of Barley Seedlings (Hordeum vulgare)

    Get PDF
    Salinity can negatively impact crop growth and yield. Changes in DNA methylation are known to occur when plants are challenged by stress and have been associated with the regulation of stress-response genes. However, the role of DNA-methylation in moderating gene expression in response to salt stress has been relatively poorly studied among crops such as barley. Here, we assessed the extent of salt-induced alterations of DNA methylation in barley and their putative role in perturbed gene expression. Using Next Generation Sequencing, we screened the leaf and root methylomes of five divergent barley varieties grown under control and three salt concentrations, to seek genotype independent salt-induced changes in DNA methylation. Salt stress caused increased methylation in leaves but diminished methylation in roots with a higher number of changes in leaves than in roots, indicating that salt induced changes to global methylation are organ specific. Differentially Methylated Markers (DMMs) were mostly located in close proximity to repeat elements, but also in 1094 genes, of which many possessed gene ontology (GO) terms associated with plant responses to stress. Identified markers have potential value as sentinels of salt stress and provide a starting point to allow understanding of the functional role of DNA methylation in facilitating barley’s response to this stressor

    Salt Stress Induces Non-CG Methylation in Coding Regions of Barley Seedlings (\u3cem\u3eHordeum vulgare\u3c/em\u3e)

    Get PDF
    Salinity can negatively impact crop growth and yield. Changes in DNA methylation are known to occur when plants are challenged by stress and have been associated with the regulation of stress-response genes. However, the role of DNA-methylation in moderating gene expression in response to salt stress has been relatively poorly studied among crops such as barley. Here, we assessed the extent of salt-induced alterations of DNA methylation in barley and their putative role in perturbed gene expression. Using Next Generation Sequencing, we screened the leaf and root methylomes of five divergent barley varieties grown under control and three salt concentrations, to seek genotype independent salt-induced changes in DNA methylation. Salt stress caused increased methylation in leaves but diminished methylation in roots with a higher number of changes in leaves than in roots, indicating that salt induced changes to global methylation are organ specific. Differentially Methylated Markers (DMMs) were mostly located in close proximity to repeat elements, but also in 1094 genes, of which many possessed gene ontology (GO) terms associated with plant responses to stress. Identified markers have potential value as sentinels of salt stress and provide a starting point to allow understanding of the functional role of DNA methylation in facilitating barley’s response to this stressor

    The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States

    Full text link
    We synthesize insights from current understanding of drought impacts at stand‐to‐biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand‐level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate‐induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought‐tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134257/1/gcb13160_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134257/2/gcb13160.pd

    Metal-Insulator Transitions in Degenerate Hubbard Models and Ax_xC60_{60}

    Get PDF
    Mott-Hubbard metal-insulator transitions in NN-fold degenerate Hubbard models are studied within the Gutzwiller approximation. For any rational filling with xx (integer) electrons per site it is found that metal-insulator transition occurs at a critical correlation energy Uc(N,x)=Uc(N,2Nx)=γ(N,x)ϵˉ(N,x)U_c(N,x)=U_c(N,2N-x)=\gamma(N,x)|\bar{\epsilon}(N,x)|, where ϵˉ\bar{\epsilon} is the band energy per particle for the uncorrelated Fermi-liquid state and γ(N,x)\gamma(N,x) is a geometric factor which increases linearly with xx. We propose that the alkali metal doped fullerides AxC60A_xC_{60} can be described by a 3-fold degenerate Hubbard model. Using the current estimate of band width and correlation energy this implies that most of AxC60{\rm A_xC_{60}}, at integer xx, are Mott-Hubbard insulators and A3C60{\rm A_3C_{60}} is a strongly correlated metal.Comment: 10 pages, Revte

    Eptinezumab for the prevention of chronic migraine: efficacy and safety through 24 weeks of treatment in the phase 3 PROMISE-2 (Prevention of migraine via intravenous ALD403 safety and efficacy-2) study.

    Get PDF
    BACKGROUND: PROMISE-2 was a phase 3, randomized, double-blind, placebo-controlled study that evaluated the efficacy and safety of repeat intravenous (IV) doses of the calcitonin gene-related peptide-targeted monoclonal antibody eptinezumab (ALD403) for migraine prevention in adults with chronic migraine. This report describes the results of PROMISE-2 through 24 weeks of treatment. METHODS: Patients received up to two 30-min IV administrations of eptinezumab 100 mg, 300 mg, or placebo separated by 12 weeks. Patients recorded migraine and headache endpoints in a daily eDiary. Additional assessments, including patient-reported outcomes, were performed at regularly scheduled clinic visits throughout the 32-week study period (screening, day 0, and weeks 2, 4, 8, 12, 16, 20, 24, and 32). RESULTS: A total of 1072 adults received treatment: eptinezumab 100 mg, n = 356; eptinezumab 300 mg, n = 350; placebo, n = 366. The reduction in mean monthly migraine days observed during the first dosing interval (100 mg, - 7.7 days; 300 mg, - 8.2 days; placebo, - 5.6 days) was further decreased after an additional dose (100 mg, - 8.2 days; 300 mg, - 8.8 days; placebo, - 6.2 days), with both doses of eptinezumab demonstrating consistently greater reductions from baseline compared to placebo. The ≥50% and ≥ 75% migraine responder rates (MRRs) increased after a second dose, with more eptinezumab-treated patients experiencing migraine response than placebo patients (≥50% MRRs weeks 13-24: 100 mg, 61.0%; 300 mg, 64.0%; placebo, 44.0%; and ≥ 75% MRRs weeks 13-24: 100 mg, 39.3%; 300 mg, 43.1%; placebo, 23.8%). The percentages of patients who improved on patient-reported outcomes, including the Headache Impact Test and Patient Global Impression of Change, increased following the second dose administration at week 12, and were greater with eptinezumab than with placebo at all time points. No new safety concerns were identified with the second dose regarding the incidence, nature, and severity of treatment-emergent adverse events. CONCLUSION: Eptinezumab 100 mg or 300 mg administered IV at day 0 and repeated at week 12 provided sustained migraine preventive benefit over a full 24 weeks and demonstrated an acceptable safety profile in patients with chronic migraine. TRIAL REGISTRATION: ClinicalTrials.gov (Identifier: NCT02974153 ). Registered November 23, 2016

    Childhood loneliness as a predictor of adolescent depressive symptoms: an 8-year longitudinal study

    Get PDF
    Childhood loneliness is characterised by children’s perceived dissatisfaction with aspects of their social relationships. This 8-year prospective study investigates whether loneliness in childhood predicts depressive symptoms in adolescence, controlling for early childhood indicators of emotional problems and a sociometric measure of peer social preference. 296 children were tested in the infant years of primary school (T1 5 years of age), in the upper primary school (T2 9 years of age) and in secondary school (T3 13 years of age). At T1, children completed the loneliness assessment and sociometric interview. Their teachers completed externalisation and internalisation rating scales for each child. At T2, children completed a loneliness assessment, a measure of depressive symptoms, and the sociometric interview. At T3, children completed the depressive symptom assessment. An SEM analysis showed that depressive symptoms in early adolescence (age 13) were predicted by reports of depressive symptoms at age 8, which were themselves predicted by internalisation in the infant school (5 years). The interactive effect of loneliness at 5 and 9, indicative of prolonged loneliness in childhood, also predicted depressive symptoms at age 13. Parent and peer-related loneliness at age 5 and 9, peer acceptance variables, and duration of parent loneliness did not predict depression. Our results suggest that enduring peer-related loneliness during childhood constitutes an interpersonal stressor that predisposes children to adolescent depressive symptoms. Possible mediators are discussed
    corecore