41 research outputs found

    Missing Shapiro steps and the 8π8\pi-periodic Josephson effect in interacting helical electron systems

    Get PDF
    Two-particle backscattering in time-reversal invariant interacting helical electron systems can lead to the formation of quasiparticles with charge e/2e/2. We propose a way to detect such states by means of the Josephson effect in the presence of proximity-induced superconductivity. In this case, the existence of e/2e/2 charges leads to an 8π8 \pi-periodic component of the Josephson current which can be identified through measurement of Shapiro steps in Josephson junctions. In particular, we show that even when there is weak explicit time-reversal symmetry breaking, which causes the two-particle backscattering to be a sub-leading effect at low energies, its presence can still be detected in driven, current-biased Shapiro step measurements. The disappearance of some of these steps as a function of the drive frequency is directly related to the existence of non-Abelian zero-energy states. We suggest that this effect can be measured in current state-of-the-art Rashba wires.Comment: 9 pages, 5 figures. A new submission extending and expanding our analysis in arXiv:1507.08881. (v2) References adde

    Dynamic response functions and helical gaps in interacting Rashba nanowires with and without magnetic fields

    Get PDF
    A partially gapped spectrum due to the application of a magnetic field is one of the main probes of Rashba spin-orbit coupling in nanowires. Such a "helical gap" manifests itself in the linear conductance, as well as in dynamic response functions such as the spectral function, the structure factor, or the tunnelling density of states. In this paper, we investigate theoretically the signature of the helical gap in these observables with a particular focus on the interplay between Rashba spin-orbit coupling and electron-electron interactions. We show that in a quasi-one-dimensional wire, interactions can open a helical gap even without magnetic field. We calculate the dynamic response functions using bosonization, a renormalization group analysis, and the exact form factors of the emerging sine-Gordon model. For special interaction strengths, we verify our results by refermionization. We show how the two types of helical gaps, caused by magnetic fields or interactions, can be distinguished in experiments.Comment: 15 pages, 7 figures, v2 refs adde

    Helical gaps in interacting {Rashba} wires at low electron densities

    Get PDF
    Rashba spin-orbit coupling and a magnetic field perpendicular to the Rashba axis have been predicted to open a partial gap (“helical gap”) in the energy spectrum of noninteracting or weakly interacting one-dimensional quantum wires. By comparing kinetic energy and Coulomb energy we show that this gap opening typically occurs at low electron densities where the Coulomb energy dominates. To address this strongly correlated limit, we investigate Rashba wires using Wigner crystal theory. We find that the helical gap exists even in the limit of strong interactions but its dependence on electron density differs significantly from the weakly interacting case. In particular, we find that the critical magnetic field for opening the gap becomes an oscillatory function of electron density. This changes strongly the expected signature of the helical gap in conductance measurements

    Spin-orbit coupling in quasi-one-dimensional Wigner crystals

    Get PDF
    We study the effect of Rashba spin-orbit coupling (SOC) on the charge and spin degrees of freedom of a quasi-one-dimensional (quasi-1D) Wigner crystal. As electrons in a quasi-1D Wigner crystal can move in the transverse direction, SOC cannot be gauged away in contrast to the pure 1D case. We show that for weak SOC, a partial gap in the spectrum opens at certain ratios between density of electrons and the inverse Rashba length. We present how the low-energy branch of charge degrees of freedom deviates due to SOC from its usual linear dependence at small wave vectors. In the case of strong SOC, we show that spin sector of a Wigner crystal cannot be described by an isotropic antiferromagnetic Heisenberg Hamiltonian any more, and that instead the ground state of neighboring electrons is mostly a triplet state. We present a new spin sector Hamiltonian and discuss the spectrum of Wigner crystal in this limit

    Mechanical Resonances of Mobile Impurities in a One-Dimensional Quantum Fluid

    Get PDF
    We study a one-dimensional interacting quantum liquid hosting a pair of mobile impurities causing backscattering. We determine the effective retarded interaction between the two impurities mediated by the liquid. We show that for strong backscattering this interaction gives rise to resonances and antiresonances in the finite-frequency mobility of the impurity pair. At the antiresonances, the two impurities remain at rest even when driven by a (small) external force. At the resonances, their synchronous motion follows the external drive in phase and reaches maximum amplitude. Using a perturbative renormalization group analysis in quantum tunneling across the impurities, we study the range of validity of our model. We predict that these mechanical antiresonances are observable in experiments on ultracold atom gases confined to one dimension

    Establishing Drug Discovery and Identification of Hit Series for the Anti-apoptotic Proteins, Bcl-2 and Mcl-1

    Get PDF
    We describe our work to establish structure- and fragment-based drug discovery to identify small molecules that inhibit the anti-apoptotic activity of the proteins Mcl-1 and Bcl-2. This identified hit series of compounds, some of which were subsequently optimized to clinical candidates in trials for treating various cancers. Many protein constructs were designed to identify protein with suitable properties for different biophysical assays and structural methods. Fragment screening using ligand-observed NMR experiments identified several series of compounds for each protein. The series were assessed for their potential for subsequent optimization using 1H and 15N heteronuclear single-quantum correlation NMR, surface plasmon resonance, and isothermal titration calorimetry measurements to characterize and validate binding. Crystal structures could not be determined for the early hits, so NMR methods were developed to provide models of compound binding to guide compound optimization. For Mcl-1, a benzodioxane/benzoxazine series was optimized to a Kd of 40 μM before a thienopyrimidine hit series was identified which subsequently led to the lead series from which the clinical candidate S 64315 (MIK 665) was identified. For Bcl-2, the fragment-derived series were difficult to progress, and a compound derived from a published tetrahydroquinone compound was taken forward as the hit from which the clinical candidate (S 55746) was obtained. For both the proteins, the work to establish a portfolio of assays gave confidence for identification of compounds suitable for optimization

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    A many-analysts approach to the relation between religiosity and well-being

    Get PDF
    The relation between religiosity and well-being is one of the most researched topics in the psychology of religion, yet the directionality and robustness of the effect remains debated. Here, we adopted a many-analysts approach to assess the robustness of this relation based on a new cross-cultural dataset (N=10,535 participants from 24 countries). We recruited 120 analysis teams to investigate (1) whether religious people self-report higher well-being, and (2) whether the relation between religiosity and self-reported well-being depends on perceived cultural norms of religion (i.e., whether it is considered normal and desirable to be religious in a given country). In a two-stage procedure, the teams first created an analysis plan and then executed their planned analysis on the data. For the first research question, all but 3 teams reported positive effect sizes with credible/confidence intervals excluding zero (median reported β=0.120). For the second research question, this was the case for 65% of the teams (median reported β=0.039). While most teams applied (multilevel) linear regression models, there was considerable variability in the choice of items used to construct the independent variables, the dependent variable, and the included covariates

    A Many-analysts Approach to the Relation Between Religiosity and Well-being

    Get PDF
    The relation between religiosity and well-being is one of the most researched topics in the psychology of religion, yet the directionality and robustness of the effect remains debated. Here, we adopted a many-analysts approach to assess the robustness of this relation based on a new cross-cultural dataset (N = 10, 535 participants from 24 countries). We recruited 120 analysis teams to investigate (1) whether religious people self-report higher well-being, and (2) whether the relation between religiosity and self-reported well-being depends on perceived cultural norms of religion (i.e., whether it is considered normal and desirable to be religious in a given country). In a two-stage procedure, the teams first created an analysis plan and then executed their planned analysis on the data. For the first research question, all but 3 teams reported positive effect sizes with credible/confidence intervals excluding zero (median reported β = 0.120). For the second research question, this was the case for 65% of the teams (median reported β = 0.039). While most teams applied (multilevel) linear regression models, there was considerable variability in the choice of items used to construct the independent variables, the dependent variable, and the included covariates
    corecore