13 research outputs found

    Attosecond time-resolved photoelectron holography

    Get PDF
    Ultrafast strong-field physics provides insight into quantum phenomena that evolve on an attosecond time scale, the most fundamental of which is quantum tunneling. The tunneling process initiates a range of strong field phenomena such as high harmonic generation (HHG), laser-induced electron diffraction, double ionization and photoelectron holography—all evolving during a fraction of the optical cycle. Here we apply attosecond photoelectron holography as a method to resolve the temporal properties of the tunneling process. Adding a weak second harmonic (SH) field to a strong fundamental laser field enables us to reconstruct the ionization times of photoelectrons that play a role in the formation of a photoelectron hologram with attosecond precision. We decouple the contributions of the two arms of the hologram and resolve the subtle differences in their ionization times, separated by only a few tens of attoseconds

    Double-blind holography of attosecond pulses

    No full text
    A key challenge in attosecond science is the temporal characterization of attosecond pulses that are essential for understanding the evolution of electronic wavefunctions in atoms, molecules and solids 1–7 . Current characterization methods, based on nonlinear light–matter interactions, are limited in terms of stability and waveform complexity. Here, we experimentally demonstrate a conceptually new linear and all-optical pulse characterization method, inspired by double-blind holography. Holography is realized by measuring the extreme ultraviolet (XUV) spectra of two unknown attosecond signals and their interference. Assuming a finite pulse duration constraint, we reconstruct the missing spectral phases and characterize the unknown signals in both isolated pulse and double pulse scenarios. This method can be implemented in a wide range of experimental realizations, enabling the study of complex electron dynamics via a single-shot and linear measurement

    Spectral Caustics in Attosecond Science

    No full text
    A unique type of singularity common in wave phenomena, known as caustics, links processes observed in many different branches of physics [1]. We investigate the role of caustics in attosecond science and in particular the physical process behind high harmonic generation. By exploiting singularities of the three-step model that describes HHG, we can manipulate and enhance specific features in the emitted harmonic spectrum. This new level of control holds promises in both scientific and technological aspects of attosecond science, and provides a deeper insight into the basic mechanism underlying the high harmonic generation process
    corecore