31 research outputs found

    First-principles Calculations of Nuclear Magnetic Resonance Chemical Shielding Tensors in Complex Ferroelectric Perovskites

    Get PDF
    Nuclear magnetic resonance (NMR) spectroscopy is one of the most important experimental probes of local atomistic structure, chemical ordering, and dynamics. Recently, NMR has increasingly been used to study complex ferroelectric perovskite alloys, where spectra can be difficult to interpret. First-principles calculations of NMR spectra can greatly assist in this task. In this work, oxygen, titanium, and niobium NMR chemical shielding tensors, s&d4; , were calculated with first-principles methods for ferroelectric transition metal prototypical ABO3 perovskites [SrTiO3, BaTiO 3, PbTiO3 and PbZrO3] and A(B,B\u27)O3 perovskite alloys Pb(Zr1/2Ti1/2)O3 (PZT) and Pb(Mg1/3Nb2/3)O3 (PMN). The principal findings are 1) a large anisotropy between deshielded sigma xx(O) ≃ sigmayy(O) and shielded sigma zz(O) components; 2) a nearly linear dependence on nearest-distance transition-metal/oxygen bond length, rs, was found for both isotropic deltaiso(O) and axial deltaax(O) chemical shifts ( d&d4;=s&d4; reference- s&d4; ), across all the systems studied, with deltaiso(O) varying by ≃ 400 ppm; 3) the demonstration that the anisotropy and linear variation arise from large paramagnetic contributions to sigmaxx(O) and sigmayy(O), due to virtual transitions between O(2p) and unoccupied B(nd) states. Using these results, an argument against Ti clustering in PZT, as conjectured from recent 17O NMR magic-angle-spinning measurements, is made. The linear dependence of the chemical shifts on rs provides a scale for determining transition-metal/oxygen bond lengths from experimental 17O NMR spectra. as such, it can be used to assess the degree of local tetragonality in perovskite solid solutions for piezoelectric applications. Results for transition metal atoms show less structural sensitivity, compared to 17O NMR, in homovalent B-site materials, but could be more useful in heterovalent B-site perovskite alloys. This work shows that both 17O and B-site NMR spectroscopy, coupled with first principles calculations, can be an especially useful probe of local structure in complex perovskite alloys

    High sensitivity of 17O NMR to p-d hybridization in transition metal perovskites: first principles calculations of large anisotropic chemical shielding

    Full text link
    A first principles embedded cluster approach is used to calculate O chemical shielding tensors, sigma, in prototypical transition metal oxide ABO_3 perovskite crystals. Our principal findings are 1) a large anisotropy of sigma between deshielded sigma_x ~ sigma_y and shielded sigma_z components (z along the Ti-O bond); 2) a nearly linear variation, across all the systems studied, of the isotropic sigma_iso and uniaxial sigma_ax components, as a function of the B-O-B bond asymmetry. We show that the anisotropy and linear variation arise from large paramagnetic contributions to sigma_x and sigma_y due to virtual transitions between O(2p) and unoccupied B(nd) states. The calculated isotropic delta_iso and uniaxial delta_ax chemical shifts are in good agreement with recent BaTiO_3 and SrTiO_3 single crystal 17O NMR measurements. In PbTiO_3 and PbZrO_3, calculated delta_iso are also in good agreement with NMR powder spectrum measurements. In PbZrO_3, delta_iso calculations of the five chemically distinct sites indicate a correction of the experimental assignments. The strong dependence of sigma on covalent O(2p)-B(nd) interactions seen in our calculations indicates that 17O NMR spectroscopy, coupled with first principles calculations, can be an especially useful tool to study the local structure in complex perovskite alloys.Comment: 12 pages, 3 figures, and 3 Table

    Spinor dynamics in an antiferromagnetic spin-1 thermal Bose gas

    Full text link
    We present experimental observations of coherent spin-population oscillations in a cold thermal, Bose gas of spin-1 sodium-23 atoms. The population oscillations in a multi-spatial-mode thermal gas have the same behavior as those observed in a single-spatial-mode antiferromagnetic spinor Bose Einstein condensate. We demonstrate this by showing that the two situations are described by the same dynamical equations, with a factor of two change in the spin-dependent interaction coefficient, which results from the change to particles with distinguishable momentum states in the thermal gas. We compare this theory to the measured spin population evolution after times up to a few hundreds of ms, finding quantitative agreement with the amplitude and period. We also measure the damping time of the oscillations as a function of magnetic field.Comment: 5 pages, 3 figure

    Coherent Control of Ultracold Collisions with Chirped Light: Direction Matters

    Full text link
    We demonstrate the ability to coherently control ultracold atomic Rb collisions using frequency-chirped light on the nanosecond time scale. For certain center frequencies of the chirp, the rate of inelastic trap-loss collisions induced by negatively chirped light is dramatically suppressed compared to the case of a positive chirp. We attribute this to a fundamental asymmetry in the system: an excited wavepacket always moves inward on the attractive molecular potential. For a positive chirp, the resonance condition moves outward in time, while for a negative chirp, it moves inward, in the same direction as the excited wavepacket; this allows multiple interactions between the wavepacket and the light, enabling the wavepacket to be returned coherently to the ground state. Classical and quantum calculations support this interpretation

    Enhancement of the formation of ultracold 85^{85}Rb2_2 molecules due to resonant coupling

    Full text link
    We have studied the effect of resonant electronic state coupling on the formation of ultracold ground-state 85^{85}Rb2_2. Ultracold Rb2_2 molecules are formed by photoassociation (PA) to a coupled pair of 0u+0_u^+ states, 0u+(P1/2)0_u^+(P_{1/2}) and 0u+(P3/2)0_u^+(P_{3/2}), in the region below the 5S+5P1/25S+5P_{1/2} limit. Subsequent radiative decay produces high vibrational levels of the ground state, X1Σg+X ^1\Sigma_g^+. The population distribution of these XX state vibrational levels is monitored by resonance-enhanced two-photon ionization through the 21Σu+2 ^1\Sigma_u^+ state. We find that the populations of vibrational levels vv''=112-116 are far larger than can be accounted for by the Franck-Condon factors for 0u+(P1/2)X1Σg+0_u^+(P_{1/2}) \to X ^1\Sigma_g^+ transitions with the 0u+(P1/2)0_u^+(P_{1/2}) state treated as a single channel. Further, the ground-state molecule population exhibits oscillatory behavior as the PA laser is tuned through a succession of 0u+0_u^+ state vibrational levels. Both of these effects are explained by a new calculation of transition amplitudes that includes the resonant character of the spin-orbit coupling of the two 0u+0_u^+ states. The resulting enhancement of more deeply bound ground-state molecule formation will be useful for future experiments on ultracold molecules.Comment: 6 pages, 5 figures; corrected author lis

    Characterization and Compensation of the Residual Chirp in a Mach-Zehnder-Type Electro-Optical Intensity Modulator

    Full text link
    We utilize various techniques to characterize the residual phase modulation of a fiber-based Mach-Zehnder electro-optical intensity modulator. A heterodyne technique is used to directly measure the phase change due to a given change in intensity, thereby determining the chirp parameter of the device. This chirp parameter is also measured by examining the ratio of sidebands for sinusoidal amplitude modulation. Finally, the frequency chirp caused by an intensity pulse on the nanosecond time scale is measured via the heterodyne signal. We show that this chirp can be largely compensated with a separate phase modulator. The various measurements of the chirp parameter are in reasonable agreement.Comment: 11 pages, 6 figure

    Generation of Arbitrary Frequency Chirps with a Fiber-Based Phase Modulator and Self-Injection-Locked Diode Laser

    Get PDF
    We present a novel technique for producing pulses of laser light whose frequency is arbitrarily chirped. The output from a diode laser is sent through a fiber-optical delay line containing a fiber-based electro-optical phase modulator. Upon emerging from the fiber, the phase-modulated pulse is used to injection-lock the laser and the process is repeated. Large phase modulations are realized by multiple passes through the loop while the high optical power is maintained by self-injection-locking after each pass. Arbitrary chirps are produced by driving the modulator with an arbitrary waveform generator
    corecore