63 research outputs found

    Ocean bottom seismics

    Get PDF

    Introduction to special issue on gas hydrate in porous media: linking laboratory and field-scale phenomena

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124(8), (2019): 7525-7537, doi: 10.1029/2019JB018186.The proliferation of drilling expeditions focused on characterizing natural gas hydrate as a potential energy resource has spawned widespread interest in gas hydrate reservoir properties and associated porous media phenomena. Between 2017 and 2019, a Special Section of this journal compiled contributed papers elucidating interactions between gas hydrate and sediment based on laboratory, numerical modeling, and field studies. Motivated mostly by field observations in the northern Gulf of Mexico and offshore Japan, several papers focus on the mechanisms for gas hydrate formation and accumulation, particularly with vapor phase gas, not dissolved gas, as the precursor to hydrate. These studies rely on numerical modeling or laboratory experiments using sediment packs or benchtop micromodels. A second focus of the Special Section is the role of fines in inhibiting production of gas from methane hydrate, controlling the distribution of hydrate at a pore scale, and influencing the bulk behavior of seafloor sediments. Other papers fill knowledge gaps related to the physical properties of hydrate‐bearing sediments and advance new approaches in coupled thermal‐mechanical modeling of these sediments during hydrate dissociation. Finally, one study addresses the long‐standing question about the fate of methane hydrate at the molecular level when CO2 is injected into natural reservoirs under hydrate‐forming conditions.C. R. was supported by the U.S. Geological Survey's Energy Resources Program and the Coastal/Marine Hazards and Resources Program, as well as by DOE Interagency Agreement DE‐FE0023495. C. R. thanks W. Waite and J. Jang for discussions and suggestions that improved this paper and L. Stern for a helpful review. J. Y. Lee was supported by the Ministry of Trade, Industry, and Energy (MOTIE) through the Project “Gas Hydrate Exploration and Production Study (19‐1143)” under the management of the Gas Hydrate Research and Development Organization (GHDO) of Korea and the Korea Institute of Geoscience and Mineral Resources (KIGAM). Any use of trade, firm, or product name is for descriptive purposes only and does not imply endorsement by the U.S. Government

    Scientific Drilling

    Get PDF

    Focused fluid seepage related to variations in accretionary wedge structure, Hikurangi margin, New Zealand

    Get PDF
    Hydrogeological processes influence the morphology, mechanical behavior, and evolution of subduction margins. Fluid supply, release, migration, and drainage control fluid pressure and collectively govern the stress state, which varies between accretionary and nonaccretionary systems. We compiled over a decade of published and unpublished acoustic data sets and seafloor observations to analyze the distribution of focused fluid expulsion along the Hikurangi margin, New Zealand. The spatial coverage and quality of our data are exceptional for subduction margins globally. We found that focused fluid seepage is widespread and varies south to north with changes in subduction setting, including: wedge morphology, convergence rate, seafloor roughness, and sediment thickness on the incoming Pacific plate. Overall, focused seepage manifests most commonly above the deforming backstop, is common on thrust ridges, and is largely absent from the frontal wedge despite ubiquitous hydrate occurrences. Focused seepage distribution may reflect spatial differences in shallow permeability architecture, while diffusive fluid flow and seepage at scales below detection limits are also likely. From the spatial coincidence of fluids with major thrust faults that disrupt gas hydrate stability, we surmise that focused seepage distribution may also reflect deeper drainage of the forearc, with implications for pore-pressure regime, fault mechanics, and critical wedge stability and morphology. Because a range of subduction styles is represented by 800 km of along-strike variability, our results may have implications for understanding subduction fluid flow and seepage globally

    Estimates of Methane Release From Gas Seeps at the Southern Hikurangi Margin, New Zealand

    Get PDF
    The highest concentration of cold seep sites worldwide has been observed along convergent margins, where fluid migration through sedimentary sequences is enhanced by tectonic deformation and dewatering of marine sediments. In these regions, gas seeps support thriving chemosynthetic ecosystems increasing productivity and biodiversity along the margin. In this paper, we combine seismic reflection, multibeam and split-beam hydroacoustic data to identify, map and characterize five known sites of active gas seepage. The study area, on the southern Hikurangi Margin off the North Island of Aotearoa/New Zealand, is a well-established gas hydrate province and has widespread evidence for methane seepage. The combination of seismic and hydroacoustic data enable us to investigate the geological structures underlying the seep sites, the origin of the gas in the subsurface and the associated distribution of gas flares emanating from the seabed. Using multi-frequency split-beam echosounder (EK60) data we constrain the volume of gas released at the targeted seep sites that lie between 1,110 and 2,060 m deep. We estimate the total deep-water seeps in the study area emission between 8.66 and 27.21 × 10 6 kg of methane gas per year. Moreover, we extrpolate methane fluxes for the whole Hikurangi Margin based on an existing gas seep database, that range between 2.77 × 10 8 and 9.32 × 10 8 kg of methane released each year. These estimates can result in a potential decrease of regional pH of 0.015–0.166 relative to the background value of 7.962. This study provides the most quantitative assessment to date of total methane release on the Hikurangi Margin. The results have implications for understanding what drives variation in seafloor biological communities and ocean biogeochemistry in subduction margin cold seep sites

    The diverse morphology of pockmarks around Aotearoa New Zealand

    Get PDF
    Seafloor pockmarks are abundant around Aotearoa New Zealand, occurring across a diverse range of tectonic, sedimentological and geomorphological settings. Globally, the formation and source of pockmarks is widely researched because they: 1) have potential links to subsurface hydrocarbon systems, 2) can provide important habitats for benthic organisms and 3) may be indications of fluid escape pathways or areas of sediment disturbance, which influence seafloor stability and could pose a risk to infrastructure. Pockmarks are widely associated with fluid release (such as gas or water) from subsurface reservoirs. However, the formation of pockmarks, the processes that shape and modify their morphology over time, and the relative timing of these events, remains enigmatic. Here, we compile the first national database of over 30,000 pockmarks around Aotearoa New Zealand, allowing us to begin to comprehend the dynamic processes that shape and affect pockmarks by exploring regional and inter-regional patterns in pockmark geometry and seabed characteristics. This compilation reveals several significant trends, including a distinct lack of correlation between active seafloor seeps and pockmarks, and a strong association of pockmarks with mud-rich seafloor substrate. Furthermore, we highlight key knowledge gaps that require further investigation moving forward, including a lack of constraint on the timing of pockmark formation, and limited modelling of the processes involved in their formation

    Slow slip source characterized by lithological and geometric heterogeneity

    Get PDF
    Slow slip events (SSEs) accommodate a significant proportion of tectonic plate motion at subduction zones, yet little is known about the faults that actually host them. The shallow depth (<2 km) of well-documented SSEs at the Hikurangi subduction zone offshore New Zealand offers a unique opportunity to link geophysical imaging of the subduction zone with direct access to incoming material that represents the megathrust fault rocks hosting slow slip. Two recent International Ocean Discovery Program Expeditions sampled this incoming material before it is entrained immediately down-dip along the shallow plate interface. Drilling results, tied to regional seismic reflection images, reveal heterogeneous lithologies with highly variable physical properties entering the SSE source region. These observations suggest that SSEs and associated slow earthquake phenomena are promoted by lithological, mechanical, and frictional heterogeneity within the fault zone, enhanced by geometric complexity associated with subduction of rough crust
    corecore