20,191 research outputs found

    Age and growth of blue rockfish (Sebastes mystinus) from central and northern California

    Get PDF
    Otoliths from blue rockfish (Sebastes mystinus), were aged by using a combination of surface and break-and-burn methods. The samples were collected between 1978 and 1998 off central and northern California. Annual growth increments in the otoliths were validated by using edge analysis for females up to age 23 and for males to age 25.The first annual growth increment was identified by comparing the diameter of the otolith from fish known to be one year old collected in May (when translucent zone formation was completed) to the mean diameter of the first translucent zone in the otoliths from older fish. Our estimated maxi-mum ages of 44 years for males and 41 years for females were much older than those reported in previous studies. Von Bertalanffy growth models were developed for each sex. Females grew faster and reached larger maximum length than males. The growth models were similar to those generated in other studies of this species in southern and central California. Fish from northern and central California had similar maximum sizes, maximum ages, and growth model parameters

    Pressure Induced Changes in the Antiferromagnetic Superconductor YbPd2Sn

    Get PDF
    Low temperature ac magnetic susceptibility measurements of the coexistent antiferromagnetic superconductor YbPd2Sn have been made in hydrostatic pressures < 74 kbar in moissanite anvil cells. The superconducting transition temperature is forced to T(SC) = 0 K at a pressure of 58 kbar. The initial suppression of the superconducting transition temperature is corroborated by lower hydrostatic pressure (p < 16 kbar) four point resisitivity measurements, made in a piston cylinder pressure cell. At ambient pressure, in a modest magnetic field of ~ 500 G, this compound displays reentrant superconducting behaviour. This reentrant superconductivity is suppressed to lower temperature and lower magnetic field as pressure is increased. The antiferromagnetic ordering temperature, which was measured at T(N) = 0.12 K at ambient pressure is enhanced, to reach T(N) = 0.58 K at p = 74 kbar. The reasons for the coexistence of superconductivity and antiferromagnetism is discussed in the light of these and previous findings. Also considered is why superconductivity on the border of long range magnetic order is so much rarer in Yb compounds than in Ce compounds. The presence of a new transition visible by ac magnetic susceptibility under pressure and in magnetic fields greater than 1.5 kG is suggested.Comment: 5 pages, 6 figure

    Quantifying microbial utilization of petroleum hydrocarbons in salt-marsh sediments using the ^(13)C content of bacterial rRNA

    Get PDF
    Natural remediation of oil spills is catalyzed by complex microbial consortia. Here we take a whole-community approach to investigate bacterial incorporation of petroleum hydrocarbons from a simulated oil spill. We utilized the natural difference in carbon-isotopic abundance between a salt marsh ecosystem supported by the ^(13)C-enriched C4 grass, Spartina alterniflora, and the ^(13)C-depleted composition of petroleum to monitor changes in the ^(13)C content of biomass. Magnetic-bead capture methods for the selective recovery of bacterial RNA were used to monitor the ^(13)C content of bacterial biomass during a two-week experiment. The data show that by the end of the experiment, up to 26% of bacterial biomass derived from consumption of the freshly-spilled oil. The results contrast with the inertness of a nearby relict spill, which occurred in 1969 in West Falmouth, MA. Sequences of 16S rRNA genes from our experimental samples also were consistent with previous reports suggesting the importance of {gamma}- and {delta}-Proteobacteria and Firmicutes in the remineralization of hydrocarbons. The magnetic-bead capture approach makes it possible to quantify uptake of petroleum hydrocarbons by microbes in-situ. Although employed here at the Domain level, RNA-capture procedures can be highly specific. The same strategy could be used with genus-level specificity, something which is not currently possible using the ^(13)C content of biomarker lipids

    Identifying Galaxy Mergers in Observations and Simulations with Deep Learning

    Get PDF
    Mergers are an important aspect of galaxy formation and evolution. We aim to test whether deep learning techniques can be used to reproduce visual classification of observations, physical classification of simulations and highlight any differences between these two classifications. With one of the main difficulties of merger studies being the lack of a truth sample, we can use our method to test biases in visually identified merger catalogues. A convolutional neural network architecture was developed and trained in two ways: one with observations from SDSS and one with simulated galaxies from EAGLE, processed to mimic the SDSS observations. The SDSS images were also classified by the simulation trained network and the EAGLE images classified by the observation trained network. The observationally trained network achieves an accuracy of 91.5% while the simulation trained network achieves 65.2% on the visually classified SDSS and physically classified EAGLE images respectively. Classifying the SDSS images with the simulation trained network was less successful, only achieving an accuracy of 64.6%, while classifying the EAGLE images with the observation network was very poor, achieving an accuracy of only 53.0% with preferential assignment to the non-merger classification. This suggests that most of the simulated mergers do not have conspicuous merger features and visually identified merger catalogues from observations are incomplete and biased towards certain merger types. The networks trained and tested with the same data perform the best, with observations performing better than simulations, a result of the observational sample being biased towards conspicuous mergers. Classifying SDSS observations with the simulation trained network has proven to work, providing tantalizing prospects for using simulation trained networks for galaxy identification in large surveys.Comment: Submitted to A&A, revised after first referee report. 20 pages, 22 figures, 14 tables, 1 appendi

    Selecting children for head CT following head injury

    Get PDF
    OBJECTIVE: Indicators for head CT scan defined by the 2007 National Institute for Health and Care Excellence (NICE) guidelines were analysed to identify CT uptake, influential variables and yield. DESIGN: Cross-sectional study. SETTING: Hospital inpatient units: England, Wales, Northern Ireland and the Channel Islands. PATIENTS: Children (3 years were much more likely to have CT than those <3 years (OR 2.35 (95% CI 2.08 to 2.65)). CONCLUSION: Compliance with guidelines and diagnostic yield was variable across age groups, the type of hospital and region where children were admitted. With this pattern of clinical practice the risks of both missing intracranial injury and overuse of CT are considerable

    Unanticipated proximity behavior in ferromagnet-superconductor heterostructures with controlled magnetic noncollinearity

    Get PDF
    Magnetization noncollinearity in ferromagnet-superconductor (F/S) heterostructures is expected to enhance the superconducting transition temperature (Tc) according to the domain-wall superconductivity theory, or to suppress Tc when spin-triplet Cooper pairs are explicitly considered. We study the proximity effect in F/S structures where the F layer is a Sm-Co/Py exchange-spring bilayer and the S layer is Nb. The exchange-spring contains a single, controllable and quantifiable domain wall in the Py layer. We observe an enhancement of superconductivity that is nonmonotonic as the Py domain wall is increasingly twisted via rotating a magnetic field, different from theoretical predictions. We have excluded magnetic fields and vortex motion as the source of the nonmonotonic behavior. This unanticipated proximity behavior suggests that new physics is yet to be captured in the theoretical treatments of F/S systems containing noncollinear magnetization.Comment: 17 pages, 4 figures. Physical Review Letters in pres

    Lumbar-pelvic range and coordination during lifting tasks

    Get PDF
    Spine motion has been described to have two regions, a neutral zone where lumbar rotation can occur with little resistance and an elastic zone where structures such as ligaments, facet joints and intervertebral disks resist rotation. In vivo, the passive musculature can contribute to further limiting the functional neutral range of lumbar motion. Movement out of this functional neutral range could potentially put greater loads on these structures. In this study, the range of lumbar curvature rotation was examined in twelve healthy, untrained volunteers at four torso inclination angles. The lumbar curvature during straight-leg lifting tasks was then defined as a percentage of this range of possible lumbar curvatures. Subjects were found to remain neutrally oriented during the flexion phase of a lifting task. During the extension phase of the lifting task, however, subjects were found to assume a more kyphotic posture, approaching the edge of the functional range of motion. This was found to be most pronounced for heavy lifting tasks. By allowing the lumbar curvature to go in a highly kyphotic posture, subjects may be taking advantage of stretch-shortening behavior in extensor musculature and associated tendons to reduce the energy required to raise the torso. Such a kyphotic posture during extension, however, may put excessive loading on the elastic structures of the spine and torso musculature increasing the risk of injury.This work was supported in part by Whitaker Foundation Biomedical Engineering Research (Grant RG-03-0043) and by the BRIN Program of the National Center for Research Resources (NIH Grant Number P20 RR16475)
    • …
    corecore