13,555 research outputs found

    Measuring and comparing the reliability of the structured walkthrough evaluation method with novices and experts

    Get PDF
    Effective evaluation of websites for accessibility remains problematic. Automated evaluation tools still require a significant manual element. There is also a significant expertise and evaluator effect. The Structured Walkthrough method is the translation of a manual, expert accessibility evaluation process adapted for use by novices. The method is embedded in the Accessibility Evaluation Assistant (AEA), a web accessibility knowledge management tool. Previous trials examined the pedagogical potential of the tool when incorporated into an undergraduate computing curriculum. The results of the evaluations carried out by novices yielded promising, consistent levels of validity and reliability. This paper presents the results of an empirical study that compares the reliability of accessibility evaluations produced by two groups (novices and experts). The main results of this study indicate that overall reliability of expert evaluations was 76% compared to 65% for evaluations produced by novices. The potential of the Structured Walkthrough method as a useful and viable tool for expert evaluators is also examined. Copyright 2014 ACM

    Coal feed component testing for CDIF

    Get PDF
    Investigations conducted during the conceptual design of the Montana MHD Component Development and Integration Facility (CDIF) identified commercially available processing and feeding equipment potentially suitable for use in a reference design. Tests on sub-scale units of this equipment indicated that they would perform as intended

    Droplet size and morphology characterization for diesel sprays under atmospheric operating conditions

    Get PDF
    The shape of microscopic fuel droplets may differ from the perfect sphere, affecting their external surface area and thus the heat transfer with the surrounding gas. Hence there is a need for the characterization of droplet shapes, and the estimation of external surface area, in order to enable the development of physically accurate mathematical models for the heating and evaporation of diesel fuel sprays. We present ongoing work to automat-ically identify and reconstruct the morphology of fuel droplets, primarily focusing in this study on irregularly-shaped, partially-deformed and oscillating droplets under atmospheric conditions. We used direct imaging tech-niques based on long-working distance microscopy and ultra-high-speed video to conduct a detailed temporal investigation of droplet morphology. We applied purpose-built algorithms to extract droplet size, velocity, vol-ume and external surface area from the microscopic ultra-high-speed video frames. High resolution images of oscillating droplets and a formation of a droplet form ligament, sphericity factors, volume as well as external surface area are presented for 500 bar injection pressure in the near nozzle region (up to 0.7 mm from nozzle exit) under atmospheric conditions. We observed a range of different liquid structures, including perfectly spher-ical, non-spherical droplets and stretched ligaments. We found that large droplets and ligaments exceeding the size of the nozzle hole could be found at the end of injection. In order to estimate droplet volume and external surface area from two-dimensional droplet information, a discrete revolution of the droplet silhouette about its major centroidal axis was used. Special attention was paid to the estimation of actual errors in the prediction of volume and surface characteristics from a droplet silhouette. In addition to the estimation of droplet volume and external surface area, the actual shape reconstruction in 3D coordinates from a droplet silhouette was performed in order to enable future numerical modelling studies of real droplets

    The effect of operating conditions on post-injection fuel discharge in an optical engine

    Get PDF
    After the end of injection, the needle closes and residual fuel present inside the injector sac and orifices is discharged due to the high fluid inertia. This so-called post-injection fuel discharge can present several problems. The excess fuel can undergo incomplete combustion due to its large, slow moving and often surface-bound nature. Not only does this have a negative effect on emissions and performance, but it has been speculated that the by-products of incomplete combustion are implicated in the growth of carbonaceous deposits on the tips of fuel injectors. Accumulation of these deposits is known to lead to premature fuel injector failure that can lead to re-ductions in power output and engine lifetime. Seeing as modern multiple-injection strategies give rise to an in-creased number of transient injection phases, post-injection discharges are an increasingly common occurrence during normal operating conditions. In order to develop a phenomenological model for the fluid dynamics after the end of injection, there is a need to characterise the causes of this discharge and how they might be influenced by engine operating conditions. In this study we present ongoing analysis into results from the first visualisation of post injection fuel discharge at the microscopic level under engine-like operating conditions. We observed the process of fuel discharge for multi-hole injectors, using a high-speed camera fitted with a long-distance micro-scope and a high-speed laser illumination source. We related the effect of a variety of operating conditions on the severity of this process, including injection pressure and in-cylinder pressure along with a characterisation of the dynamics of the various modes by which these undesired liquid structures are produced. We present the different modes by which this process occurs and we conclude that the extent of post-injection discharge depends on both the in-cylinder and injection pressures
    corecore