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2 BP Formulated Products Technology, Pangbourne, UK 
 

Abstract 
The shape of microscopic fuel droplets may differ from the perfect sphere, affecting their external surface 

area and thus the heat transfer with the surrounding gas. Hence there is a need for the characterization of droplet 
shapes, and the estimation of external surface area, in order to enable the development of physically accurate 
mathematical models for the heating and evaporation of diesel fuel sprays. We present ongoing work to automat-
ically identify and reconstruct the morphology of fuel droplets, primarily focusing in this study on irregularly-
shaped, partially-deformed and oscillating droplets under atmospheric conditions. We used direct imaging tech-
niques based on long-working distance microscopy and ultra-high-speed video to conduct a detailed temporal 
investigation of droplet morphology. We applied purpose-built algorithms to extract droplet size, velocity, vol-
ume and external surface area from the microscopic ultra-high-speed video frames. High resolution images of 
oscillating droplets and a formation of a droplet form ligament, sphericity factors, volume as well as external 
surface area are presented for 500 bar injection pressure in the near nozzle region (up to 0.7 mm from nozzle 
exit) under atmospheric conditions. We observed a range of different liquid structures, including perfectly spher-
ical, non-spherical droplets and stretched ligaments. We found that large droplets and ligaments exceeding the 
size of the nozzle hole could be found at the end of injection. In order to estimate droplet volume and external 
surface area from two-dimensional droplet information, a discrete revolution of the droplet silhouette about its 
major centroidal axis was used. Special attention was paid to the estimation of actual errors in the prediction of 
volume and surface characteristics from a droplet silhouette. In addition to the estimation of droplet volume and 
external surface area, the actual shape reconstruction in 3D coordinates from a droplet silhouette was performed 
in order to enable future numerical modelling studies of real droplets. 
 
Keywords: Spray, atomization, droplets, morphology, imaging diagnostics 

 
Introduction 

It is typically considered that a primary anthropogenic source of important pollutants is the combustion of 
fossil fuel in different combustion devices. Main pollutants emitted from virtually all types of transportation and 
electric power generation stations are nitrogen oxides, carbon monoxide, unburned hydrocarbons and soot. Injec-
tion system employed in internal combustion engines is a key element in design of current and future diesel en-
gines due to a number of reasons. The introduction of the liquid fuels inside a combustion chamber in a diesel 
engine is performed separately from the supply of air, which is already present in a cylinder. A typical diffusion 
flame is formed and the combustion rate is governed by the mixing time, because the chemical reaction time is 
very short, of the order of 2-5 ms. Since, fuel is introduced in a liquid state, evaporation must take place before 
efficient mixing can occur. The fuel injection is a complex process and has been the subject of experimental and 
theoretical investigation. The relationship between the combustion process and the spray parameters has been 
investigated, e.g. by [1-6]. Experimental characterization, i.e. the distribution of droplets sizes, characterization 
of individual droplets at the spray periphery, entire spray statistics of diesel spray formation were studied, e.g. by 
a number of authors [7-11]. The most traditional approaches to measure droplet sizes in spray system were based 
on Phase Doppler Anemometry (PDA)/Phase Doppler Particle Analyzer (PDPA) [12] and diffraction-based 
granulometer [13]. An important drawback of these techniques is inability to measure non-spherical droplets and 
highly deformed liquid structures. As it has been demonstrated, highly deformed droplets and irregular liquid 
structures can be observed during injection processes [14, 15]. Direct imaging techniques are suitable tools that 
can be used to capture all liquid structures with adequate spatial resolution. High resolution long-working dis-
tance microscopic imaging, which belongs to direct imaging methods, has been proved to be a valuable tool in 
understanding of droplets formation and breakup processes.  

A detailed characterization of droplet morphology is necessary in order to develop appropriate computation-
al models. The modelling of droplet collision, evaporation and ligament evolution requires experimental data of 
sufficiently good quality. Two-dimensional images obtained by using high resolution microscopic imaging, in 
principle, can provide detailed information about a range of liquid structures. However, the 2D images are 
formed of individual projected areas of 3D shapes. The same projected area can represent different liquid struc-
tures in object plane.  
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Traditionally, particle shape analyses are performed based on the assumption that particles are spherical. A 
number of pixels representing a droplet shape can be determined and equivalent diameter is computed in a 
straightforward manner. External surface area and volume of individual droplets can then be computed analyti-
cally [16]. The assumption of sphericity may not be valid for all operating conditions and injection phases. Dur-
ing idle engine load, the injection pressure is low and high non-spherical droplets are expected to be found. In 
this work it is demonstrated that during droplet life time, the droplet morphology could be quite different due to 
external forces acting on the droplet. Distribution of drop sizes in high pressure fuel sprays is influenced by drag 
forces due to droplets high velocity. Drop distortion and oscil lation result in dynamic change of drag coefficient, 
which should be taken into account by numerical models. 

Liquid spray droplet morphology was investigated by, e.g. [17, 18] by using various criterions. Estimation of 
droplet volume from 2D imaging techniques was outlined, e.g. by [19]. An excellent overview of spray meas-
urements technology is also given by [20]. At present, experimental data at engine conditions for oscillating 
droplet morphology and droplet formation from ligaments is particularly limited, which is crucial to estimating 
of droplet breakup mechanisms. Therefore, the main goal of the present work is to estimate morphology of oscil-
lating droplets and ligaments during the end of injection by using discrete revolution method, which was sug-
gested by [16]. This approach relies on a principle of discrete revolution about major centroidal axis of individu-
al slices of a sliced object. In fact, discrete revolution method uses 2D images to create 3D representation of a 
two-dimensional object. The major centroidal axis is the axis, which passes through the centre of gravity of an 
object and about which moment inertia of the object is minimized. For a simple geometrical shape, such as a 
long cylinder, which is represented as a rectangle with long sides on 2D images, the major centroidal axis is 
along the longest side. The detailed description of this method can be found in [16]. 

The remaining paper is structured as follows: The next section outlines experimental setup, which was used 
to investigate droplet morphology under atmospheric operating conditions. Then, main findings are outlined. The 
paper ends with the summary of the main conclusions. 
 
Experimental setup 

The ultra-high-speed microscopy setup used by the authors at the University of Brighton is described in [21], 
hence only a brief description will be included here. The diesel liquid spray investigated under atmospheric con-
ditions was produced by a conventional 7-hole diesel fuel injector DFI 1.5 with nominal nozzle diameter of 
0.135 mm. The injector was mounted in an atmospheric chamber horizontally perpendicular to a light source and 
a high speed camera (Figure 1). The illumination of the sprays was achieved by a 500 joule xenon flashgun, 
which delivered a 2 ms light pulse synchronized with a CCD camera. Ultra-high speed intensified CCD camera 
SIM16 from Specialised Imaging Ltd. was used to capture 16 images at a rate of 200,000 frames per second. The 
camera exposure was set to 500 ns. All images were taken at 1.0 ms ASOI. The camera was equipped with a 
long-distance microscope with a nominal working distance of 95 mm and numerical aperture of 0.204. The cam-
era was synchronized with an injection event via a programmable pulse generator. Injection pressure was 500 
bar, which was representative of idle engine load. The injection duration was 500 µs. The fuel was ordinary die-
sel fuel with no bio content B0. A conventional common-rail injection system was employed with a number of 
classical components.  

 

 
 
Figure 1: Experimental setup used to study droplet morphology under atmospheric conditions. SIM16 camera 
was equipped with a long-working distance microscope. The field of view for the microscope was within 0.5 mm 
from the injector nozzle.  

 
Raw images were binarised by using a threshold method and projected area, sphericity parameter, estimated 

volume as well as estimated external surface area were computed. The sphericity parameter, which quantifies the 
likeness between the droplet shape and the spherical shape, was computed according to Blaisot [18] as follows: 
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where: pS sphericity parameter (Sp = 0 for spherical droplet), IS is area of the droplet image, CS is circular 

surface of same area as droplet image centred on centred of gravity of the droplet image 
 
 
Results and discussion 

The accurate estimation of droplet volume and droplet external area by the discrete revolution method re-
quires accurate assessment of volume and surface area integration errors, which are inherent to this method. The 
integration errors are dependent on a number of slices, which are used to represent a droplet and the diameter of 
the droplet. It is convenient to use a computer generated perfectly spherical droplet and compute external surface 
area and droplet volume by using the discrete revolution method. It can then be compared with analytical solu-
tion for the volume and surface area, which are known a priori. Figure 2 shows a computer generated image of a 
circle with diameter of 100 pixels and the reconstructed 3D shape of a ‘digital droplet’, which was performed by 
using the discrete revolution method and 20 slices.  

 
 

Figure 2: Example of computer generated image of a circle (left). Diameter of the circle is 100 pixels. Recon-
structed 3D shape (right) was performed by using discrete revolution method and 20 slices. Note that for recon-
structed 3D shape, z-axis is always along droplet major axis. 
 

Depending on a number of slices, the reconstructed shape can be the so-called ‘smooth’ or ‘serrated’ even 
though, the resulting integration errors are weakly dependent on a number of slices. In order to investigate the 
relationship between the integration error and a droplet diameter, a set of tests was carried out on computer gen-
erated perfectly spherical droplets. The perfectly spherical droplets were obtained by revolving a computer gen-
erated 2D circles. Figure 3 shows external surface area and computed volume computational errors for a range of 
computer generated perfectly spherical droplets by using discrete revolution method with 5 slices. Figure 4 
shows the same computational errors for the same range of computer generated droplets by using discrete revo-
lution method with 10 slices. All integration errors were computed as follows: 
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where: V is volume integration error, A is external surface area integration error, Aa is external surface 

area computed analytically for a droplet of given size, Ar is external surface area computed by using discrete 
revolution method, Va and Vr are analytically computed volume and estimated volume by discrete revolution 
method correspondingly. 
 

Integration errors of external surface area are weakly dependent on a droplet size and asymptotically in-
crease towards 5% value. The discrete revolution method tends to overestimate the true external surface area by 
5% in worst case scenario if 5 slices are used to integrate the droplet. For 10 slices, all integration errors were 
below 5% for all droplet diameters. It should be noted that for a typical microscopy experiment, the scale factor 
is 0.5-0.6 mm/pixel. Therefore, a typical droplet would be in the range of 60 – 150 pixels. However, volume 
integration errors are highly dependent on a number of slices as it can be seen in Figures 3 and 4. Volume inte-
gration errors for 10 slices were also below 5% in worst case scenario. Therefore, in this work, 10 slices were 
used in post-processing of all experimental images. It should also be noted that a higher number of slices can be 
used if necessary. However, computational time significantly increases if several droplets are analyzed at the 
same time. Larger number of slices was also investigated and no significant improvement in integration was 
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found. Therefore, the minimum number of slices was chosen on a basis of acceptable integration errors and 
computational time. 

 
Figure 3: Area (left) and volume (right) computational error (%) for a range of computer generated perfectly 
spherical droplets for 5 slices. Area and volume of droplets were computed analytically and by using discrete 
revolution method. 
 

 
Figure 4: Area (left) and volume (right) computational error (%) for a range of computer generated perfectly 
spherical droplets for 10 slices. Area and volume of computer generated droplets were computed analytically and 
by using discrete revolution method. 
 

Figure 5 shows 16 enhanced flat-fielded images obtained using the SIM16 ultra-high speed camera. The in-
jector nozzle is seen as a black region on top right. Raw images obtained from the camera usually have very low 
contrast ratio and binarisation is hardly possible. Intensified cameras are notoriously known for low signal-to-
noise ratio and images obtained with intensified cameras often need to be enhanced. In this research, images 
were enhanced by using downsampling by 2 and a median filter with kernel of 3x3 pixels. Image enhancing was 
performed in order to binarise images by using a thresholding method. The quality of the images significantly 
increased when enhancing was applied.  

At time 0 a large droplet with diameter of circa 194 µm and a ligament of 243 µm long are visible. The large 
droplet slowly moves away from the injector nozzle, while ligament is shrinking with velocity of circa 2.27 m/s 
(velocity vector is along the major axis of the shrinking ligament). As the ligament shrinks its shape changes to a 
dumbbell-like structure and eventually becomes nearly spherical droplet during 70 µs. In fact, it is hard to see at 
time 0 whether the ligament is connected to the large droplet or is separated by a small distance. Droplet shape 
changes at time 75 µs and resembles oblate spheroid and perhaps starts oscillating after this time (start of oscilla-
tion can be seen as the deformation of the droplet shape).  

Figure 6 shows computed volume and external surface area for a forming droplet. The volume and external 
area were computed from time 50 µs (Fig. 5). No binarisation was possible before time 50 µs due to refraction, 
which had the same intensity as the background and hence, droplet perimeter, volume and external area could 
not be estimated. Under room ambient conditions no evaporation takes place and hence, the estimated volume 
must be constant. However, the discripancy in estimated volume reaches 20% (Fig. 6), which can be linked to 
image binarisation errors. External surface area increases reaching maximum at 70 µs (nearly spherical droplet) 
and decreases after 70 µs.  

Figure 7 shows enhanced flat-fielded images of oscillating droplet of the equivalent diameter of 105 µm 
found at the end of injection. The most spherical shape of the droplet is found at the time of 15 µs in frame 4, for 
which sphericity parameter is the lowest (Sp=0.052). The sphericity parameter for a droplet shown in Figure 7 
and a droplet in Figure 5 is shown in Figure 8 as a function of time. 
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Figure 5: Enhanced flat-fielded images obtained from SIM16 ultra-high speed camera. Images were enhanced 
by using downsampling by 2 and a median filter with kernel of 4x4 pixels. Equivalent diameter of a nearly 
spherical droplet formed at time 70 µs is 34 µm. Scale factor is 0.56 µs/pix. Note that enhanced images were 
downsampled and all pixel coordinates must be multiplied by 2 to correct for downsampling. The ligament 
shrinks with velocity of circa 2.27 m/s (velocity vector is along the major axis of the shrinking ligament). Fuel is 
injected at 500 bar under room temperature and pressure ambient conditions. 
 

 
Figure 6: Computed volume (left) and external surface area (right) for a forming droplet, which is shown in Fig-
ure 5 by using discrete revolution method. Error bars show ±5% integration errors. No binarisation was possible 
before time 50 µs due to refraction, which had the same intensity as the background and hence, droplet perimeter 
could not be estimated. 
 

Computed volume and external surface area for a droplet shown in Figure 7 is also shown in Figure 9. The 
most spherical shape was used as a benchmark for analytical computation of volume and external surface area. 
The most spherical shape implies that the droplet projected area can be used in an analytical computation of 
droplet volume and surface area. Since, the reconstructed volume performed by the discrete revolution method is 
not constant it can imply that there is a significant change in the shape of the droplet out of the measuring plane. 
This assumption seems to be plausible, because the droplet is a 3D object and oscillates along all the coordinates, 
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under the assumption of non-evaporating conditions. It is, therefore, apparent that there is a need for dual camera 
visualisation technique, e.g. for more accurate droplet shape, volume and surface area estimation and characteri-
zation of possible morphological errors in estimation of the 'true' volume and the 'true' surface area. 
 

 
Figure 7: Enhanced flat-fielded images of an oscillating droplet of the equivalent diameter of 105 µm found at 
the end of injection. Time is plotted on the top of individual frame images and shown in µs. Sphericity parameter 
computed according to [18] is also shown under each frame image. The most spherical shape is found at the time 
of 15 µs (Sp=0.052). The absolute velocity of this droplet is circa 3 m/s. Fuel is injected at 500 bar under room 
temperature and pressure ambient conditions. 
 

 
Figure 8: Sphericity parameter as a function of time for a droplet shown in Figure 7 (left) and a droplet in 

Figure 5 (right).  
 

 
Figure 9: Computed volume (left) and external surface area (right) for a droplet shown in Figure 7 by using dis-
crete revolution method. Error bars show ±5% integration errors. Straight line is the volume and area computed 
from the most spherical shape of the droplet for which the droplet equivalent diameter was used in analytical 
evaluation of droplet volume and surface area. 
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Conclusions 
    The present work focused on morphological analysis of diesel fuel droplets under primarily atmospheric 
operating conditions. It was found that:  Droplet oscillations can be significant and accurate prediction of the droplet volume and external 

surface area requires utilisation of double camera configuration.   Large droplets with a diameter bigger than the injector nozzle hole can be formed under atmos-
pheric operating conditions. The large droplet was not analysed in details. However, no significant 
change in the shape of the large droplet was noticed.   It was shown that it was possible to reconstruct the 3D shape of the measured droplets by using the 
discrete revolution method with maximum integration errors of 5% in worst case scenario.   In high-speed video sequences at non-evaporating conditions, sphericity parameter can in principle 
be an indicator of change in droplet volume due to out-of-measuring plane droplet oscillation. 
However, this statements needs to be proved against more rigorous experimental data under better 
controlled operating conditions, e.g. by using a droplet generator and the two camera configura-
tion. 
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