25 research outputs found

    Research Reports Andean Past 6

    Get PDF

    The roots of autism and ADHD twin study in Sweden (RATSS)

    Get PDF
    Neurodevelopmental disorders affect a substantial minority of the general population. Their origins are still largely unknown, but a complex interplay of genetic and environmental factors causing disturbances of the central nervous system's maturation and a variety of higher cognitive skills is presumed. Only limited research of rather small sample size and narrow scope has been conducted in neurodevelopmental disorders using a twin-differences design. The Roots of Autism and ADHD Twin Study in Sweden (RATSS) is an ongoing project targeting monozygotic twins discordant for categorical or dimensional autistic and inattentive/hyperactive-impulsive phenotypes as well as other neurodevelopmental disorders, and typically developing twin controls. Included pairs are 9 years of age or older, and comprehensively assessed for psychopathology, medical history, neuropsychology, and dysmorphology, as well as structural, functional, and molecular brain imaging. Specimens are collected for induced pluripotent (iPS) and neuroepithelial stem cells, genetic, gut bacteria, protein-/monoamine, and electron microscopy analyses. RATSS's objective is to generate a launch pad for novel surveys to understand the complexity of genotype-environment-phenotype interactions in autism spectrum disorder and attention-deficit hyperactivity disorder (ADHD). By October 2013, RATSS had collected data from 55 twin pairs, among them 10 monozygotic pairs discordant for autism spectrum disorder, seven for ADHD, and four for other neurodevelopmental disorders. This article describes the design, recruitment, data collection, measures, collected pairs’ characteristics, as well as ongoing and planned analyses in RATSS. Potential gains of the study comprise the identification of environmentally mediated biomarkers, the emergence of candidates for drug development, translational modeling, and new leads for prevention of incapacitating outcomes

    Identification of 51 Novel Exons of the Usher Syndrome Type 2A (USH2A) Gene That Encode Multiple Conserved Functional Domains and That Are Mutated in Patients with Usher Syndrome Type II

    Get PDF
    The USH2A gene is mutated in patients with Usher syndrome type IIa, which is the most common subtype of Usher syndrome and is characterized by hearing loss and retinitis pigmentosa. Since mutation analysis by DNA sequencing of exons 1–21 revealed only ∼63% of the expected USH2A mutations, we searched for so-far-uncharacterized exons of the gene. We identified 51 novel exons at the 3′ end of the gene, and we obtained indications for alternative splicing. The putative protein encoded by the longest open reading frame harbors, in addition to the known functional domains, two laminin G and 28 fibronectin type III repeats, as well as a transmembrane region followed by an intracellular domain with a PDZ-binding domain at its C-terminal end. Semiquantitative expression profile analysis suggested a low level of expression for both the long and the short isoform(s) and partial overlap in spatial and temporal expression patterns. Mutation analysis in 12 unrelated patients with Usher syndrome, each with one mutation in exons 1–21, revealed three different truncating mutations in four patients and two missense mutations in one patient. The presence of pathogenic mutations in the novel exons indicates that at least one of the putative long isoforms of the USH2A protein plays a role in both hearing and vision
    corecore