27 research outputs found

    Deciphering the biotic and climatic factors that influence floral scents : a systematic review of floral volatile emissions

    Get PDF
    Altres ajuts: Catalan Government grant FI-2013Currently, a global analysis of the information available on the relative composition of the floral scents of a very diverse variety of plant species is missing. Such analysis may reveal general patterns on the distribution and dominance of the volatile compounds that form these mixtures, and may also allow measuring the effects of factors such as the phylogeny, pollination vectors, and climatic conditions on the floral scents of the species. To fill this gap, we compiled published data on the relative compositions and emission rates of volatile organic compounds (VOCs) in the floral scents of 305 plant species from 66 families. We also gathered information on the groups of pollinators that visited the flowers and the climatic conditions in the areas of distribution of these species. This information allowed us to characterize the occurrence and relative abundances of individual volatiles in floral scents and the effects of biotic and climatic factors on floral scent. The monoterpenes trans-β-ocimene and linalool and the benzenoid benzaldehyde were the most abundant floral VOCs, in both ubiquity and predominance in the floral blends. Floral VOC richness and relative composition were moderately preserved traits across the phylogeny. The reliance on different pollinator groups and the climate also had important effects on floral VOC richness, composition, and emission rates of the species. Our results support the hypothesis that key compounds or compounds originating from specific biosynthetic pathways mediate the attraction of the main pollinators. Our results also indicate a prevalence of monoterpenes in the floral blends of plants that grow in drier conditions, which could link with the fact that monoterpene emissions protect plants against oxidative stresses throughout drought periods and their emissions are enhanced under moderate drought stress. Sesquiterpenes, in turn, were positively correlated with mean annual temperature, supporting that sesquiterpene emissions are dominated mainly by ambient temperature. This study is the first to quantitatively summarise data on floral-scent emissions and provides new insights into the biotic and climatic factors that influence floral scents

    The consecutive disparity index, D : a measure of temporal variability in ecological studies

    Get PDF
    Temporal variability in ecological processes has attracted the attention of many disciplines in ecology, which has resulted in the development of several quantitative indices. The coefficient of variation (CV = standard deviation × mean−1) is still one of the most commonly used indices to assess temporal variability, despite being known to present several problems on its assessment (e.g., mean dependence or high sensitivity to rare events). The proportional variability (PV) index was developed to solve some of the CV's drawbacks, but, so far, no variability index takes into account the chronological order of the values in time series. In this paper, we introduce the consecutive disparity index (D), a temporal variability index that takes into account the chronological order of the values, assessing the average rate of change between consecutive values. We used computer simulations and empirical data for fruit production in trees, bird counts, and rodent captures to compare the behavior of D, PV, and CV under different scenarios. D was sensitive to changes in temporal autocorrelation in the negative autocorrelation range, and CV and PV were sensitive in the positive autocorrelation range despite not considering the chronological order of the values. The CV, however, was highly dependent on the mean of the time series, while D and PV were not. Our results demonstrate that, like PV, D solves many of the problems of the CV index while taking into account the chronological order of values in time series. The mathematical and statistical features of D make it a suitable index for analyzing temporal variability in a wide range of ecological studies

    Monitoring Spatial and Temporal Variabilities of Gross Primary Production Using MAIAC MODIS Data

    Get PDF
    Remotely sensed vegetation indices (RSVIs) can be used to efficiently estimate terrestrial primary productivity across space and time. Terrestrial productivity, however, has many facets (e.g., spatial and temporal variability, including seasonality, interannual variability, and trends), and different vegetation indices may not be equally good at predicting them. Their accuracy in monitoring productivity has been mostly tested in single-ecosystem studies, but their performance in different ecosystems distributed over large areas still needs to be fully explored. To fill this gap, we identified the facets of terrestrial gross primary production (GPP) that could be monitored using RSVIs. We compared the temporal and spatial patterns of four vegetation indices (NDVI, EVI, NIRV, and CCI), derived from the MODIS MAIAC data set and of GPP derived from data from 58 eddy-flux towers in eight ecosystems with different plant functional types (evergreen needle-leaved forest, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed forest, open shrubland, grassland, cropland, and wetland) distributed throughout Europe, covering Mediterranean, temperate, and boreal regions. The RSVIs monitored temporal variability well in most of the ecosystem types, with grasslands and evergreen broad-leaved forests most strongly and weakly correlated with weekly and monthly RSVI data, respectively. The performance of the RSVIs monitoring temporal variability decreased sharply, however, when the seasonal component of the time series was removed, suggesting that the seasonal cycles of both the GPP and RSVI time series were the dominant drivers of their relationships. Removing winter values from the analyses did not affect the results. NDVI and CCI identified the spatial variability of average annual GPP, and all RSVIs identified GPP seasonality well. The RSVI estimates, however, could not estimate the interannual variability of GPP across sites or monitor the trends of GPP. Overall, our results indicate that RSVIs are suitable to track different facets of GPP variability at the local scale, therefore they are reliable sources of GPP monitoring at larger geographical scales
    corecore