96 research outputs found
Recommended from our members
Back-Contact Perovskite Solar Cells
Interdigitated back-contact (IBC) architectures are the best performing technology in crystalline Si (c-Si) photovoltaics (PV). Although single junction perovskite solar cells have now surpassed 23% efficiency, most of the research has mainly focussed on planar and mesostructured architectures. The number of studies involving IBC devices is still limited and the proposed architectures are unfeasible for large scale manufacturing. Here we discuss the importance of IBC solar cells as a powerful tool for investigating the fundamental working mechanisms of perovskite materials. We show a detailed fabrication protocol for IBC perovskite devices that does not involve photolithography and metal evaporation. The interview is available at https://youtu.be/nvuNC29TvOY.The authors thank the Engineering and Physical Sciences Research Council (EPSRC). XMaS is a mid-range facility supported by the EPSRC. The authors also thank all the XMaS beamline team staff for their support. M.A.-J. thanks Cambridge Materials Limited and EPSRC (EP/M005143/1) for their funding and technical support. M.A. acknowledges support from the President of the UAE’s Distinguished Student Scholarship Program (DSS), granted by the UAE’s Ministry of Presidential Affairs
Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling
In lead halide perovskite solar cells, there is at least one recycling event of electron-hole pair to photon to electron-hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells.We acknowledge financial support from the Engineering and Physical Sciences Research Council of the U.K. (EPSRC). J.M.R. and M.T. thank the Winton Programme for the Physics of Sustainability (University of Cambridge). L.M.P.-O. thanks the Cambridge Home European Scheme for financial support. L.M.P.-O. and J.P.H.R. also thank the Nano Doctoral Training Center (NanoDTC) of the EPSRC for financial support. M.A.-J. thanks Nyak Technology Limited for a PhD scholarship. F.D. acknowledges funding from a Herchel Smith Research Fellowship
Ultraefficient Thermophotovoltaic Power Conversion By Band-Edge Spectral Filtering
Thermophotovoltaic power conversion utilizes thermal radiation from a local heat source to generate electricity in a photovoltaic cell. It was shown in recent years that the addition of a highly reflective rear mirror to a solar cell maximizes the extraction of luminescence. This, in turn, boosts the voltage, enabling the creation of record-breaking solar efficiency. Now we report that the rear mirror can be used to create thermophotovoltaic systems with unprecedented high thermophotovoltaic efficiency. This mirror reflects low-energy infrared photons back into the heat source, recovering their energy. Therefore, the rear mirror serves a dual function; boosting the voltage and reusing infrared thermal photons. This allows the possibility of a practical \u3e50% efficient thermophotovoltaic system. Based on this reflective rear mirror concept, we report a thermophotovoltaic efficiency of 29.1 ± 0.4% at an emitter temperature of 1,207 °C
Recommended from our members
Efficient singlet exciton fission in pentacene prepared from a soluble precursor
Carrier multiplication using singlet exciton fission (SF) to generate a pair of spin-triplet excitons from a single optical excitation has been highlighted as a promising approach to boost the photocurrent in photovoltaics (PVs) thereby allowing PV operation beyond the Shockley-Queisser limit. The applicability of many efficient fission materials, however, is limited due to their poor solubility. For instance, while acene-based organics such as pentacene (Pc) show high SF yields (up to 200%), the plain acene backbone renders the organic molecule insoluble in common organic solvents. Previous approaches adding solubilizing side groups such as bis(tri--propylsilylethynyl) to the Pc core resulted in low vertical carrier mobilities due to reduction of the transfer integrals via steric hindrance, which prevented high efficiencies in PVs. Here we show how to achieve good solubility while retaining the advantages of molecular Pc by using a soluble precursor route. The precursor fully converts into molecular Pc through thermal removal of the solubilizing side groups upon annealing above 150 °C in the solid state. The annealed precursor shows small differences in the crystallinity compared to evaporated thin films of Pc, indicating that the Pc adopts the bulk rather than surface polytype. Furthermore, we identify identical SF properties such as sub-100 fs fission time and equally long triplet lifetimes in both samples.M.T. thanks the Gates Cambridge Trust and the Winton Programme for the Physics of Sustainability for funding. A.H.K. acknowledges the Cambridge Nehru Bursary, the Cambridge Bombay Society, a Trinity-Henry Barlow- and Haidar Scholarship as well as Rana Denim Pvt. Ltd. for financial support. K.B. and J.N. would like to thank Dr. Tom Arnold and Jakub Rozboril for assistance during the beam time at Diamond Light Source. Financial support for K.B. from Diamond Light Source, Swiss Light Source, and the German Research Foundation (Grant No. BR 4869/1-1) is gratefully acknowledged. M.L.B. is a research fellow of Christ’s College, Cambridge. This work was supported by the Engineering and Physical Sciences Research Council (Grant Nos. EP/M005143/1, EP/G060738/1 and Cambridge NanoDTC EP/G037221/1, EP/L015978/1)
Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water.
Lead-halide perovskites have triggered the latest breakthrough in photovoltaic technology. Despite the great promise shown by these materials, their instability towards water even in the presence of low amounts of moisture makes them, a priori, unsuitable for their direct use as light harvesters in aqueous solution for the production of hydrogen through water splitting. Here, we present a simple method that enables their use in photoelectrocatalytic hydrogen evolution while immersed in an aqueous solution. Field's metal, a fusible InBiSn alloy, is used to efficiently protect the perovskite from water while simultaneously allowing the photogenerated electrons to reach a Pt hydrogen evolution catalyst. A record photocurrent density of -9.8 mA cm(-2) at 0 V versus RHE with an onset potential as positive as 0.95±0.03 V versus RHE is obtained. The photoelectrodes show remarkable stability retaining more than 80% of their initial photocurrent for ∼1 h under continuous illumination.The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7-PEOPLE-2013-IEF under REA Grant Agreement No. (623061; M.C-Q.). This work was also supported by the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development) and the OMV Group (J.W., M.F.K. and E.R.); L.M.P.-O. would like to thank the Engineering and Physical Sciences Research Council of the UK (EPSRC), the Cambridge Home European Scholarship Scheme (CHESS) and King Abdulaziz City for Science and Technology (KACST)
A Silicon-Singlet Fission Tandem Solar Cell Exceeding 100% External Quantum Efficiency with High Spectral Stability.
After 60 years of research, silicon solar cell efficiency saturated close to the theoretical limit, and radically new approaches are needed to further improve the efficiency. The use of tandem systems raises this theoretical power conversion efficiency limit from 34% to 45%. We present the advantageous spectral stability of using voltage-matched tandem solar cells with respect to their traditional series-connected counterparts and experimentally demonstrate how singlet fission can be used to produce simple voltage-matched tandems. Our singlet fission silicon-pentacene tandem solar cell shows efficient photocurrent addition. This allows the tandem system to benefit from carrier multiplication and to produce an external quantum efficiency exceeding 100% at the main absorption peak of pentacene.This work is part of the research programme of the Netherlands Organisation for Scientific Research (NWO). The authors acknowledge financial support from the Engineering and Physical Sciences Research Council of the UK (EPSRC) and King Abdulaziz City for Science and Technology (KACST). LMPO acknowledges the Cambridge Home European Scholarship Scheme (CHESS). MT acknowledges the Gates Cambridge Trust and the Winton Program for the Physics of Sustainability
Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices.
One source of instability in perovskite solar cells (PSCs) is interfacial defects, particularly those that exist between the perovskite and the hole transport layer (HTL). We demonstrate that thermally evaporated dopant-free tetracene (120 nm) on top of the perovskite layer, capped with a lithium-doped Spiro-OMeTAD layer (200 nm) and top gold electrode, offers an excellent hole-extracting stack with minimal interfacial defect levels. For a perovskite layer interfaced between these graded HTLs and a mesoporous TiO2 electron-extracting layer, its photoluminescence yield reaches 15% compared to 5% for the perovskite layer interfaced between TiO2 and Spiro-OMeTAD alone. For PSCs with graded HTL structure, we demonstrate efficiency of up to 21.6% and an extended power output of over 550 hours of continuous illumination at AM1.5G, retaining more than 90% of the initial performance and thus validating our approach. Our findings represent a breakthrough in the construction of stable PSCs with minimized nonradiative losses.Cambridge Materials Limite
Recommended from our members
Long-Range Charge Extraction in Back-Contact Perovskite Architectures via Suppressed Recombination
Metal-halide perovskites are promising solution-processable semiconductors for efficient solar cells and show unexpectedly high diffusion ranges of photogenerated charges. Here, we study charge extraction and recombination in metal-halide perovskite back-contact devices, which provide a powerful experimental platform to resolve electron- or hole-only transport phenomena. We prepare thin films of perovskite semiconductors over laterally-separated electron- and hole-selective materials of SnO¬2 and NiOx, respectively. Upon illumination, electrons (holes) generated over SnO¬2 (NiOx) rapidly transfer to the buried collection electrode, leaving holes (electrons) to diffuse laterally as majority carriers in the perovskite layer. Under these conditions, we find recombination is strongly suppressed. Resulting surface recombination velocities are below 2 cm s-1, an order of magnitude lower than in the presence of both carrier types, and approaching values of high-quality silicon. We find diffusion lengths of electrons and holes exceed 12 µm in our horizontal polycrystalline device, an order of magnitude higher than reported in vertically stacked architectures. We fabricate back-contact solar cells with short-circuit currents as high as 18.4 mA cm-2, reaching 70% external quantum efficiency
- …