157 research outputs found

    Reversal-field memory in magnetic hysteresis

    Full text link
    We report results demonstrating a singularity in the hysteresis of magnetic materials, the reversal-field memory effect. This effect creates a nonanalyticity in the magnetization curves at a particular point related to the history of the sample. The microscopic origin of the effect is associated with a local spin-reversal symmetry of the underlying Hamiltonian. We show that the presence or absence of reversal-field memory distinguishes two widely studied models of spin glasses (random magnets).Comment: 3 pages, 5 figures. Proceedings of "2002 MMM Conferece", Tampa, F

    Ensemble dependence in the Random transverse-field Ising chain

    Get PDF
    In a disordered system one can either consider a microcanonical ensemble, where there is a precise constraint on the random variables, or a canonical ensemble where the variables are chosen according to a distribution without constraints. We address the question as to whether critical exponents in these two cases can differ through a detailed study of the random transverse-field Ising chain. We find that the exponents are the same in both ensembles, though some critical amplitudes vanish in the microcanonical ensemble for correlations which span the whole system and are particularly sensitive to the constraint. This can \textit{appear} as a different exponent. We expect that this apparent dependence of exponents on ensemble is related to the integrability of the model, and would not occur in non-integrable models.Comment: 8 pages, 12 figure

    Effects of diagonal disorder on Charge Density Wave and Superconductivity in local pair systems

    Full text link
    We analyse the influence of diagonal disorder (random site energy) on Charge Density Wave (CDW) and Superconductivity (SS) in local pair systems which are described by the model of hard core charged bosons on a lattice. This problem was previously studied within the mean field approximation for the case of half filled band (n = 1). Here we extend that investigation to the case of arbitrary particle concentration (0 < n < 2) and examine the phase diagrams of the model and the behaviour of superfluid density as a function of n and the increasing disorder. Depending on the strength of random on-site energies, the intersite density-density repulsion and the concentration the model can exhibit several various phases, including homogeneous phases: CDW, SS and Bose-glass (NO) as well as the phase separated states: CDW-SS, CDW-NO and particle droplets. The obtained results for SS phase are in qualitative agreement with the available Monte Carlo calculations for two dimensional lattice. Also, in a definite range of parameters the system exhibits the phenomena which we call a disorder induced superconductivity and a disorder induced charge ordering.Comment: 21 pages, 8 figure

    Punctuated vortex coalescence and discrete scale invariance in two-dimensional turbulence

    Full text link
    We present experimental evidence and theoretical arguments showing that the time-evolution of freely decaying 2-d turbulence is governed by a {\it discrete} time scale invariance rather than a continuous time scale invariance. Physically, this reflects that the time-evolution of the merging of vortices is not smooth but punctuated, leading to a prefered scale factor and as a consequence to log-periodic oscillations. From a thorough analysis of freely decaying 2-d turbulence experiments, we show that the number of vortices, their radius and separation display log-periodic oscillations as a function of time with an average log-frequency of ~ 4-5 corresponding to a prefered scaling ratio of ~ 1.2-1.3Comment: 22 pages and 38 figures. Submitted to Physica

    Effective collective barrier for magnetic relaxation in frozen ferrofluids

    Full text link
    Magnetic relaxation and frequency response were measured in frozen ferrimagnetic colloids of different concentrations. A crossover from reversible to irreversible behavior is observed for concentrated colloids. In irreversible state, magnetic relaxation is time-logarithmic over seven orders of magnitude of experimental time windows. A master curve construction within mean field phenomenological model is applied to extract effective collective barrier as a function of the irreversible magnetization. The barrier logarithmically diverges, providing evidence for self-organized critical behavior during magnetic relaxation in frozen ferrofluids

    Ragweed Subpollen Particles of Respirable Size Activate Human Dendritic Cells

    Get PDF
    Ragweed (Ambrosia artemisiifolia) pollen grains, which are generally considered too large to reach the lower respiratory tract, release subpollen particles (SPPs) of respirable size upon hydration. These SPPs contain allergenic proteins and functional NAD(P)H oxidases. In this study, we examined whether exposure to SPPs initiates the activation of human monocyte-derived dendritic cells (moDCs). We found that treatment with freshly isolated ragweed SPPs increased the intracellular levels of reactive oxygen species (ROS) in moDCs. Phagocytosis of SPPs by moDCs, as demonstrated by confocal laser-scanning microscopy, led to an up-regulation of the cell surface expression of CD40, CD80, CD86, and HLA-DQ and an increase in the production of IL-6, TNF-a, IL-8, and IL-10. Furthermore, SPP-treated moDCs had an increased capacity to stimulate the proliferation of naı¨ve T cells. Co-culture of SPP-treated moDCs with allogeneic CD3+ pan-T cells resulted in increased secretion of IFN-c and IL-17 by T cells of both allergic and non-allergic subjects, but induced the production of IL- 4 exclusively from the T cells of allergic individuals. Addition of exogenous NADPH further increased, while heat-inactivation or pre-treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases, strongly diminished, the ability of SPPs to induce phenotypic and functional changes in moDCs, indicating that these processes were mediated, at least partly, by the intrinsic NAD(P)H oxidase activity of SPPs. Collectively, our data suggest that inhaled ragweed SPPs are fully capable of activating dendritic cells (DCs) in the airways and SPPs’ NAD(P)H oxidase activity is involved in initiation of adaptive immune responses against innocuous pollen proteins

    The Two-Dimensional Disordered Boson Hubbard Model: Evidence for a Direct Mott Insulator-to-Superfluid Transition and Localization in the Bose Glass Phase

    Full text link
    We investigate the Bose glass phase and the insulator-to-superfluid transition in the two-dimensional disordered boson Hubbard model in the Villain representation via Monte Carlo simulations. In the Bose glass phase the probability distribution of the local susceptibility is found to have a 1/χ21/ \chi^2 tail and the imaginary time Green's function decays algebraically C(τ)τ1C(\tau) \sim \tau^{-1}, giving rise to a divergent global susceptibility. By considering the participation ratio it is shown that the excitations in the Bose glass phase are fully localized and a scaling law is established. For commensurate boson densities we find a direct Mott insulator to superfluid transition without an intervening Bose glass phase for weak disorder. For this transition we obtain the critical exponents z=1,ν=0.7±0.1z=1, \nu=0.7\pm 0.1 and η=0.1±0.1\eta = 0.1 \pm 0.1, which agree with those for the classical three-dimensional XY model without disorder. This indicates that disorder is irrelevant at the tip of the Mott-lobes and that here the inequality ν2/d\nu\ge2/d is violated.Comment: 15 pages RevTeX, 18 postscript-figures include

    Self-averaging of random and thermally disordered diluted Ising systems

    Full text link
    Self-averaging of singular thermodynamic quantities at criticality for randomly and thermally diluted three dimensional Ising systems has been studied by the Monte Carlo approach. Substantially improved self-averaging is obtained for critically clustered (critically thermally diluted) vacancy distributions in comparison with the observed self-averaging for purely random diluted distributions. Critically thermal dilution, leading to maximum relative self-averaging, corresponds to the case when the characteristic vacancy ordering temperature is made equal to the magnetic critical temperature for the pure 3D Ising systems. For the case of a high ordering temperature, the self-averaging obtained is comparable to that in a randomly diluted system.Comment: 4 pages, 4figures, RevTe
    corecore