387 research outputs found

    Observation of medium-induced yield enhancement and acoplanarity broadening of low-pTp_\mathrm{T} jets from measurements in pp and central Pb−-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    International audienceThe ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high pTp_{\rm T}) hadron trigger in proton−-proton and central Pb−-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV. A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb−-Pb collisions. Recoil jet distributions are reported for jet resolution parameter R=0.2R=0.2, 0.4, and 0.5 in the range 7<pT,jet<1407 < p_{\rm T,jet} < 140 GeV/c/c and trigger−-recoil jet azimuthal separation π/2<Δφ<π\pi/2 < \Delta\varphi < \pi. The measurements exhibit a marked medium-induced jet yield enhancement at low pTp_{\rm T} and at large azimuthal deviation from Δφ∌π\Delta\varphi\sim\pi. The enhancement is characterized by its dependence on Δφ\Delta\varphi, which has a slope that differs from zero by 4.7σ\sigma. Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation

    Probing the Chiral Magnetic Wave with charge-dependent flow measurements in Pb-Pb collisions at the LHC

    No full text
    International audienceThe Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN=\sqrt{s_{\mathrm{NN}}}= 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic (v2v_{2}) and triangular (v3v_{3}) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope r3Normr_{3}^{\rm Norm} is found to be larger than zero and to have a magnitude similar to r2Normr_{2}^{\rm Norm}, thus pointing to a large background contribution for these measurements. Furthermore, r2Normr_{2}^{\rm Norm} can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW (fCMWf_{\rm CMW}) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for fCMWf_{\rm CMW}, and in the 10-60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level

    Charged-particle production as a function of the relative transverse activity classifier in pp, p−-Pb, and Pb−-Pb collisions at the LHC

    No full text
    International audienceMeasurements of charged-particle production in pp, p−-Pb, and Pb−-Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum (pTtrigp_{\mathrm{T}}^{\rm trig}) in the range 8<pTtrig<158<p_{\mathrm{T}}^{\rm trig}<15 GeV/c/c. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, RT=NchT/⟹NchT⟩R_{\mathrm{T}}=N_{\mathrm{ch}}^{\mathrm{T}}/\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle, is used to group events according to their UE activity, where NchTN_{\mathrm{ch}}^{\mathrm{T}} is the charged-particle multiplicity per event in the transverse region and ⟹NchT⟩\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle is the mean value over the whole analysed sample. The energy dependence of the RTR_{\mathrm{T}} distributions in pp collisions at s=2.76\sqrt{s}=2.76, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle pTp_{\rm T} spectra as a function of RTR_{\mathrm{T}} in the three azimuthal regions in pp, p−-Pb, and Pb−-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p−-Pb)

    Forward rapidity J/ψ production as a function of charged-particle multiplicity in pp collisions at s \sqrt{s} = 5.02 and 13 TeV

    No full text
    International audienceThe production of J/ψ is measured as a function of charged-particle multiplicity at forward rapidity in proton-proton (pp) collisions at center-of-mass energies s \sqrt{s} = 5.02 and 13 TeV. The J/ψ mesons are reconstructed via their decay into dimuons in the rapidity interval (2.5 < y < 4.0), whereas the charged-particle multiplicity density (dNch_{ch}/dη) is measured at midrapidity (|η| < 1). The production rate as a function of multiplicity is reported as the ratio of the yield in a given multiplicity interval to the multiplicity-integrated one. This observable shows a linear increase with charged-particle multiplicity normalized to the corresponding average value for inelastic events (dNch_{ch}/dη/〈dNch_{ch}/dηâŒȘ), at both the colliding energies. Measurements are compared with available ALICE results at midrapidity and theoretical model calculations. First measurement of the mean transverse momentum (〈pT_{T}âŒȘ) of J/ψ in pp collisions exhibits an increasing trend as a function of dNch_{ch}/dη/〈dNch_{ch}/dηâŒȘ showing a saturation towards high charged-particle multiplicities.[graphic not available: see fulltext

    Light-flavor particle production in high-multiplicity pp collisions at s\sqrt{s} = 13 TeV as a function of transverse spherocity

    No full text
    Results on the transverse spherocity dependence of light-flavor particle production (π\pi, K, p, ϕ\phi, K∗0{\rm K^{*0}}, KS0{\rm K}^{0}_{\rm{S}}, Λ\Lambda, Ξ\Xi) at midrapidity in high-multiplicity pp collisions at s\sqrt{s} = 13 TeV were obtained with the ALICE apparatus. The transverse spherocity estimator (SOpT=1S_{\text{O}}^{p_{\rm T}=1}) categorizes events by their azimuthal topology. Utilizing narrow selections on SOpT=1S_{\text{O}}^{p_{\rm T}=1}, it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The SOpT=1S_{\text{O}}^{p_{\rm T}=1} estimator is found to effectively constrain the hardness of the events when the midrapidity (∣η∣<0.8\left | \eta \right |< 0.8) estimator is used. The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced. The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of SOpT=1S_{\text{O}}^{p_{\rm T}=1}.Results on the transverse spherocity dependence of light-flavor particle production (π\pi, K, p, ϕ\phi, K∗0{\rm K^{*0}}, KS0{\rm K}^{0}_{\rm{S}}, Λ\Lambda, Ξ\Xi) at midrapidity in high-multiplicity pp collisions at s=13\sqrt{s} = 13 TeV were obtained with the ALICE apparatus. The transverse spherocity estimator (SOpT=1S_{{\rm O}}^{{\it p}_{\rm T}=1}) categorizes events by their azimuthal topology. Utilizing narrow selections on SOpT=1S_{\text{O}}^{{\it p}_{\rm T}=1}, it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The SOpT=1S_{{\rm O}}^{{\it p}_{\rm T}=1} estimator is found to effectively constrain the hardness of the events when the midrapidity (∣η∣<0.8\left | \eta \right |< 0.8) estimator is used. The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced. The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of SOpT=1S_{{\rm O}}^{{\it p}_{\rm T}=1}

    Measurements of the groomed and ungroomed jet angularities in pp collisions at s \sqrt{s} = 5.02 TeV

    No full text
    International audienceThe jet angularities are a class of jet substructure observables which characterize the angular and momentum distribution of particles within jets. These observables are sensitive to momentum scales ranging from perturbative hard scatterings to nonperturbative fragmentation into final-state hadrons. We report measurements of several groomed and ungroomed jet angularities in pp collisions at s \sqrt{s} = 5.02 TeV with the ALICE detector. Jets are reconstructed using charged particle tracks at midrapidity (|η| < 0.9). The anti-kT_{T} algorithm is used with jet resolution parameters R = 0.2 and R = 0.4 for several transverse momentum {p}_{\mathrm{T}}^{\mathrm{ch}} ^{jet} intervals in the 20–100 GeV/c range. Using the jet grooming algorithm Soft Drop, the sensitivity to softer, wide-angle processes, as well as the underlying event, can be reduced in a way which is well-controlled in theoretical calculations. We report the ungroomed jet angularities, λα_{α}, and groomed jet angularities, λα,g_{α,g}, to investigate the interplay between perturbative and nonperturbative effects at low jet momenta. Various angular exponent parameters α = 1, 1.5, 2, and 3 are used to systematically vary the sensitivity of the observable to collinear and soft radiation. Results are compared to analytical predictions at next-to-leading-logarithmic accuracy, which provide a generally good description of the data in the perturbative regime but exhibit discrepancies in the nonperturbative regime. Moreover, these measurements serve as a baseline for future ones in heavy-ion collisions by providing new insight into the interplay between perturbative and nonperturbative effects in the angular and momentum substructure of jets. They supply crucial guidance on the selection of jet resolution parameter, jet transverse momentum, and angular scaling variable for jet quenching studies.[graphic not available: see fulltext

    Neutron emission in ultraperipheral Pb-Pb collisions at sNN\sqrt {s_{NN}} = 5.02 TeV

    No full text
    In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of 208^{208}Pb nuclei at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02~TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76\sqrt{s_{\mathrm{NN}}}=2.76~TeV. In addition, the cross sections for the exclusive emission of 1, 2, 3, 4 and 5 forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of 207,206,205,204,203^{207,206,205,204,203}Pb, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh).In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of Pb208 nuclei at sNN=5.02 TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76 TeV. In addition, the cross sections for the exclusive emission of one, two, three, four, and five forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of Pb207,206,205,204,203, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh).In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of 208^{208}Pb nuclei at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76\sqrt{s_{\mathrm{NN}}}=2.76 TeV. In addition, the cross sections for the exclusive emission of one, two, three, four, and five forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of 207,206,205,204,203^{207,206,205,204,203}Pb, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh)

    Prompt and non-prompt J/ψ/\psi production at midrapidity in Pb−-Pb collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    International audienceThe transverse momentum (pTp_{\rm T}) and centrality dependence of the nuclear modification factor RAAR_{\rm AA} of prompt and non-prompt J/ψ/\psi, the latter originating from the weak decays of beauty hadrons, have been measured by the ALICE collaboration in Pb−-Pb collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV. The measurements are carried out through the e+e−{\rm e}^{+}{\rm e}^{-} decay channel at midrapidity (∣y∣|y| 5 GeV/cc, which becomes stronger with increasing collision centrality. The results are consistent with similar LHC measurements in the overlapping pTp_{\rm T} intervals, and cover the kinematic region down to pTp_{\rm T} = 1.5 GeV/cc at midrapidity, not accessible by other LHC experiments. The suppression of prompt J/ψ/\psi in central and semicentral collisions exhibits a decreasing trend towards lower transverse momentum, described within uncertainties by models implementing J/ψ/\psi production from recombination of c and c‟\overline{\rm c} quarks produced independently in different partonic scatterings. At high transverse momentum, transport models including quarkonium dissociation are able to describe the suppression for prompt J/ψ/\psi. For non-prompt J/ψ/\psi, the suppression predicted by models including both collisional and radiative processes for the computation of the beauty-quark energy loss inside the quark−-gluon plasma is consistent with measurements within uncertainties

    Inclusive quarkonium production in pp collisions at s=5.02\sqrt{s} = 5.02 TeV

    No full text
    This article reports on the inclusive production cross section of several quarkonium states, J/ψ\mathrm{J}/\psi, ψ(2S)\psi {\rm (2S)}, ΄(1S)\Upsilon\rm(1S), ΄(2S)\Upsilon\rm(2S), and ΄(3S)\Upsilon\rm(3S), measured with the ALICE detector at the LHC, in \pp collisions at s=5.02\sqrt{s} = 5.02 TeV. The analysis is performed in the dimuon decay channel at forward rapidity (2.5<y<42.5 < y < 4). The measured cross sections, assuming unpolarized quarkonia, are: σJ/ψ=5.88±0.03±0.34 Ό\sigma_{\mathrm{J}/\psi} = 5.88 \pm 0.03 \pm 0.34\ \mub, σψ(2S)=0.87±0.06±0.10 Ό\sigma_{\psi {\rm (2S)}} = 0.87 \pm 0.06 \pm 0.10\ \mub, σ΄(1S)=45.5±3.9±3.5\sigma_{\Upsilon\rm(1S)} = 45.5 \pm 3.9 \pm 3.5 nb, σ΄(2S)=22.4±3.2±2.7\sigma_{\Upsilon\rm(2S)} = 22.4 \pm 3.2 \pm 2.7 nb, and σ΄(3S)=4.9±2.2±1.0\sigma_{\Upsilon\rm(3S)} = 4.9 \pm 2.2 \pm 1.0 nb, where the first (second) uncertainty is the statistical (systematic) one. The transverse-momentum (pTp_{\rm T}) and rapidity (yy) differential cross sections for J/ψ\mathrm{J}/\psi, ψ(2S)\psi {\rm (2S)}, ΄(1S)\Upsilon\rm(1S), and the ψ(2S)\psi {\rm (2S)}-to-J/ψ\mathrm{J}/\psi cross section ratios are presented. For the first time, the cross sections of the three ΄\Upsilon states, as well as the ψ(2S)\psi {\rm (2S)} one as a function of pTp_{\rm T} and yy, are measured at s=5.02\sqrt{s} = 5.02 TeV at forward rapidity. These measurements also significantly extend the J/ψ\mathrm{J}/\psipTp_{\rm T} reach with respect to previously published results. A comparison with ALICE measurements in pp collisions at s=2.76\sqrt{s} = 2.76, 7, 8, and 13 TeV is presented and the energy dependence of quarkonium production cross sections is discussed. Finally, the results are compared with the predictions from several production models

    Inclusive J/ψ\psi production at midrapidity in pp collisions at s = 13\sqrt{s}~=~13 TeV

    No full text
    We report on the inclusive J/ψ\psi production cross section measured at the CERN Large Hadron Collider in proton-proton collisions at a centre-of-mass energy s = 13\sqrt{s}~=~13 TeV. The J/ψ\psi mesons are reconstructed in the e+e−\rm e^{+} e^{-} decay channel and the measurements are performed at midrapidity (∣y∣<0.9|y|<0.9) in the transverse-momentum interval 0<pT<400< p_{\rm T} <40 GeV/cc, using a minimum bias data sample corresponding to an integrated luminosity Lint=32.2 nb−1L_{\text{int}} = 32.2~\text{nb}^{-1} and an Electromagnetic Calorimeter triggered data sample with Lint=8.3 pb−1L_{\text{int}} = 8.3~\mathrm{pb}^{-1}. The pTp_{\rm T}-integrated J/ψ\psi production cross section at midrapidity, computed using the minimum bias data sample, is dσ/dy∣y=0=8.97±0.24 (stat)±0.48 (syst)±0.15 (lumi) Όb\text{d}\sigma/\text{d}y|_{y=0} = 8.97\pm0.24~(\text{stat})\pm0.48~(\text{syst})\pm0.15~(\text{lumi})~\mu\text{b}. An approximate logarithmic dependence with the collision energy is suggested by these results and available world data, in agreement with model predictions. The integrated and pTp_{\rm T}-differential measurements are compared with measurements in pp collisions at lower energies and with several recent phenomenological calculations based on the non-relativistic QCD and Color Evaporation models
    • 

    corecore