67 research outputs found

    The role of personal involvement and responsibility in dictatorial allocations: A classroom experiment

    Get PDF
    Paper was revised on 2009-11-11.-- Published as article in: Rationality and Society (2009), 21(2), 1-24.fairness, dictator game, moral cost

    Do experimental subjects favor their friends?

    Get PDF
    Ideally we would like subjects of experiments to be perfect strangers so that the situation they face at the lab is not just part of a long run interaction. Unfortunately, it is not easy to reach those conditions and experimenters try to mitigate any effects from those out-of-the-lab relationships by, for instance, randomly matching subjects. However, even if this type of procedure is used, there is a positive probability that a subject may face a friend or an acquaintance. We find evidence that social proximity between subjects is irrelevant to experiment results in dictator games. Thus, although ideal conditions are not met, relations between subjects do not contaminate the results of experiments.friendship effect, dictator game, experimental procedures, fairness

    Quince (Cydonia oblonga) in vitro plant root formation through an automated temporary inmersion system, and its acclimation

    Get PDF
    Artículo científicoQuince (Cydonia oblonga) is a non-traditional fruit tree found in Costa Rica that has therapeutic and nutritional properties; however its slow growth and root formation prevents the production of a homogeneous population when using conventional farming techniques. Hence, the aim of this research project was to generate uniform plant material in a reduced time span using a temporary immersion bioreactor system (RITAS ®). A semisolid rooting MS culture medium supplemented with 0.1 mg L-1 NAA; 0.3 mg L-1 IBA and 3% sucrose (pH 6.5), developed in the Centro de Investigación en Biotecnología (CIB), Instituto Tecnológico de Costa Rica (ITCR), in Cartago, was used as a reference medium. Four different variations in the sucrose concentration (1%, 2%, 3%, and 4%) were performed in liquid medium. Each trial was evaluated with in vitro plants which had been previously exposed to the culture medium of the corresponding treatments, in a stationary mode and for a 15 day long period, and with in vitro plants without any previous treatment (a total of eight treatments). The comparison of the root formation percentages evidenced the clear effect of sucrose concentration used, with the best results obtained when using the 2% sucrose trial with no pre-treatment (73.3%). The in vitro plants were acclimated in cylinders made out of peat, have previously been disinfected with fungicide, and placed in a humidity chamber at a 20.5°C average temperature and a 75,5% relative humidity for the establishment of weekly fertilizing cycles. The acclimation process generated an 80% survival rate, since several seedlings experienced stem strangulation caused by a fungal attack. The conidiophores identified through optical and scanning electron microscopy evidenced the presence of Cladosporium spp., which was controlled with carbendazim and iprodione fungicides

    Research priorities for maintaining biodiversity’s contributions to people in Latin America

    Get PDF
    Maintaining biodiversity is crucial for ensuring human well-being. The authors participated in a workshop held in Palenque, Mexico, in August 2018, that brought together 30 mostly early-career scientists working in different disciplines (natural, social and economic sciences) with the aim of identifying research priorities for studying the contributions of biodiversity to people and how these contributions might be impacted by environmental change. Five main groups of questions emerged: (1) Enhancing the quantity, quality, and availability of biodiversity data; (2) Integrating different knowledge systems; (3) Improved methods for integrating diverse data; (4) Fundamental questions in ecology and evolution; and (5) Multi-level governance across boundaries. We discuss the need for increased capacity building and investment in research programmes to address these challenges

    MEGARA, the new intermediate-resolution optical IFU and MOS for GTC: getting ready for the telescope

    Get PDF
    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma that is being built by a Consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). The instrument is currently finishing AIV and will be sent to GTC on November 2016 for its on-sky commissioning on April 2017. The MEGARA IFU fiber bundle (LCB) covers 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec while the MEGARA MOS mode allows observing up to 92 objects in a region of 3.5x3.5 arcmin2 around the IFU. The IFU and MOS modes of MEGARA will provide identical intermediate-to-high spectral resolutions (RFWHM~6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic gratings) in the range 3700-9800ÅÅ. An x-y mechanism placed at the pseudo-slit position allows (1) exchanging between the two observing modes and (2) focusing the spectrograph for each VPH setup. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts a 4kx4k 15-μm CCD. The unique characteristics of MEGARA in terms of throughput and versatility and the unsurpassed collecting are of GTC make of this instrument the most efficient tool to date to analyze astrophysical objects at intermediate spectral resolutions. In these proceedings we present a summary of the instrument characteristics and the results from the AIV phase. All subsystems have been successfully integrated and the system-level AIV phase is progressing as expected

    Fungal Planet description sheets: 1042–1111

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.)from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.)on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.)from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes

    Research priorities for maintaining biodiversity’s contributions to people in Latin America

    Get PDF
    Maintaining biodiversity is crucial for ensuring human well-being. We participated in a workshop held in Palenque, Mexico, in August 2018, that brought together thirty mostly early-career scientists working in different disciplines (natural, social and economic sciences) with the aim of identifying research priorities for studying the contributions of biodiversity to people and how these contributions might be impacted by environmental change. Five main groups of questions emerged: (1) Enhancing the quantity, quality, and availability of biodiversity data; (2) Integrating different knowledge systems; (3) Improved methods for integrating diverse data; (4) Fundamental questions in ecology and evolution; and (5) Multi-level governance across boundaries. We discuss the need for increased capacity building and investment in research programs to address these challenges

    Bringing the Nature Futures Framework to life: creating a set of illustrative narratives of nature futures

    Get PDF
    To halt further destruction of the biosphere, most people and societies around the globe need to transform their relationships with nature. The internationally agreed vision under the Convention of Biological Diversity—Living in harmony with nature—is that “By 2050, biodiversity is valued, conserved, restored and wisely used, maintaining ecosystem services, sustaining a healthy planet and delivering benefts essential for all people”. In this context, there are a variety of debates between alternative perspectives on how to achieve this vision. Yet, scenarios and models that are able to explore these debates in the context of “living in harmony with nature” have not been widely developed. To address this gap, the Nature Futures Framework has been developed to catalyse the development of new scenarios and models that embrace a plurality of perspectives on desirable futures for nature and people. In this paper, members of the IPBES task force on scenarios and models provide an example of how the Nature Futures Framework can be implemented for the development of illustrative narratives representing a diversity of desirable nature futures: information that can be used to assess and develop scenarios and models whilst acknowledging the underpinning value perspectives on nature. Here, the term illustrative refects the multiple ways in which desired nature futures can be captured by these narratives. In addition, to explore the interdependence between narratives, and therefore their potential to be translated into scenarios and models, the six narratives developed here were assessed around three areas of the transformative change debate, specifcally, (1) land sparing vs. land sharing, (2) Half Earth vs. Whole Earth conservation, and (3) green growth vs. post-growth economic development. The paper concludes with an assessment of how the Nature Futures Framework could be used to assist in developing and articulating transformative pathways towards desirable nature futures
    corecore