10,025 research outputs found
Redundancy of classical and quantum correlations during decoherence
We analyze the time dependence of entanglement and total correlations between
a system and fractions of its environment in the course of decoherence. For the
quantum Brownian motion model we show that the entanglement and total
correlations have rather different dependence on the size of the environmental
fraction. Redundancy manifests differently in both types of correlations and
can be related with induced--classicality. To study this we introduce a new
measure of redundancy and compare it with the existing one.Comment: 6 pages, 4 figure
Aerosol-assisted metallo-organic chemical vapour deposition of Bi2Se3 films using single-molecule precursors: the crystal structure of bismuth(m) dibutyldiselenocarbamate
The complexes [Bi{Se2CN(C2H5)2}3], [Bi{Se2CN(C4H9)2}3], [Bi{Se2CN(CH3)(C4H9)}3] and
[Bi{Se2CN(CH3)(C6H13)}3] have been synthesized and characterized structurally using IR, 1H and 13C NMR. In
addition, the crystal structure of [Bi{Se2CN(C4H9)2}3] was determined by single-crystal X-ray diffraction,
showing the bismuth centre coordinated to three dialkyldiselenocarbamate ligands through the selenium donor
atoms. The Bi(III) compounds were used as precursors for the deposition of Bi2Se3 films on glass substrates
through aerosol-assisted metallo-organic chemical vapour deposition (AA-MOCVD)
The first dinuclear zinc(II) dithiocarbarnate complex with butyl substituent groups
The crystal structure of the title compound, bis( -N,N-
dibutyldithiocarbamato- 2S:S0)bis[(N,N-dibutyldithiocarba\-
forcelb]mato- 2S,S0)zinc(II)], [Zn2(C9H18NS2)4], has
been determined at 180 K. The structure contains two
crystallographically unique Zn2+ metal centres, showing
almost identical slightly distorted tetrahedral coordination
environments, and forming a dinuclear complex with two
skew-bridging syn-N,N-dibutyldithiocarbamate ligands. Two
other dithiocarbamate ligands are connected to the Zn2+
centres in a syn,syn-chelate coordination mode
A Method for Modeling Decoherence on a Quantum Information Processor
We develop and implement a method for modeling decoherence processes on an
N-dimensional quantum system that requires only an -dimensional quantum
environment and random classical fields. This model offers the advantage that
it may be implemented on small quantum information processors in order to
explore the intermediate regime between semiclassical and fully quantum models.
We consider in particular system-environment couplings which
induce coherence (phase) damping, though the model is directly extendable to
other coupling Hamiltonians. Effective, irreversible phase-damping of the
system is obtained by applying an additional stochastic Hamiltonian on the
environment alone, periodically redressing it and thereby irreversibliy
randomizing the system phase information that has leaked into the environment
as a result of the coupling. This model is exactly solvable in the case of
phase-damping, and we use this solution to describe the model's behavior in
some limiting cases. In the limit of small stochastic phase kicks the system's
coherence decays exponentially at a rate which increases linearly with the kick
frequency. In the case of strong kicks we observe an effective decoupling of
the system from the environment. We present a detailed implementation of the
method on an nuclear magnetic resonance quantum information processor.Comment: 12 pages, 9 figure
Decoherence and the rate of entropy production in chaotic quantum systems
We show that for an open quantum system which is classically chaotic (a
quartic double well with harmonic driving coupled to a sea of harmonic
oscillators) the rate of entropy production has, as a function of time, two
relevant regimes: For short times it is proportional to the diffusion
coefficient (fixed by the system--environment coupling strength). For longer
times (but before equilibration) there is a regime where the entropy production
rate is fixed by the Lyapunov exponent. The nature of the transition time
between both regimes is investigated.Comment: Revtex, 4 pages, 3 figures include
Quantum effects after decoherence in a quenched phase transition
We study a quantum mechanical toy model that mimics some features of a
quenched phase transition. Both by virtue of a time-dependent Hamiltonian or by
changing the temperature of the bath we are able to show that even after
classicalization has been reached, the system may display quantum behaviour
again. We explain this behaviour in terms of simple non-linear analysis and
estimate relevant time scales that match the results of numerical simulations
of the master-equation. This opens new possibilities both in the study of
quantum effects in non-equilibrium phase transitions and in general
time-dependent problems where quantum effects may be relevant even after
decoherence has been completed.Comment: 7 pages, 7 figures, revtex, important revisions made. To be published
in Phys. Rev.
Classical Dynamics of the Quantum Harmonic Chain
The origin of classical predictability is investigated for the one
dimensional harmonic chain considered as a closed quantum mechanical system. By
comparing the properties of a family of coarse-grained descriptions of the
chain, we conclude that local coarse-grainings in this family are more useful
for prediction than nonlocal ones. A quantum mechanical system exhibits
classical behavior when the probability is high for histories having the
correlations in time implied by classical deterministic laws. But approximate
classical determinism holds only for certain coarse-grainings and then only if
the initial state of the system is suitably restricted. Coarse-grainings by the
values of the hydrodynamic variables (integrals over suitable volumes of
densities of approximately conserved quantities) define the histories usually
used in classical physics. But what distinguishes this coarse-graining from
others? This paper approaches this question by analyzing a family of
coarse-grainings for the linear harmonic chain. At one extreme in the family
the chain is divided into local groups of atoms. At the other extreme the
atoms are distributed nonlocally over the whole chain. Each coarse-graining
follows the average (center of mass) positions of the groups and ignores the
``internal'' coordinates within each group, these constituting a different
environment for each coarse-graining. We conclude that noise, decoherence, and
computational complexity favor locality over nonlocality for deterministic
predictability.Comment: 38 pages RevTeX 3.0 + 4 figures (postscript). Numerous minor
corrections. Submitted to Physical Review
Adaptive Optics Imaging of IRAS 18276-1431: a bipolar pre-planetary nebula with circumstellar "searchlight beams" and "arcs"
We present high-angular resolution images of the post-AGB nebula
IRAS18276-1431 (also known as OH17.7-2.0) obtained with the Keck II Adaptive
Optics (AO) system in its Natural Guide Star (NGS) mode in the Kp, Lp, and Ms
near-infrared bands. We also present supporting optical F606W and F814W HST
images as well as interferometric observations of the 12CO(J=1-0), 13CO(J=1-0),
and 2.6mm continuum emission with OVRO. The envelope of IRAS18276-1431 displays
a clear bipolar morphology in our optical and NIR images with two lobes
separated by a dark waist and surrounded by a faint 4.5"x3.4" halo. Our Kp-band
image reveals two pairs of radial ``searchlight beams'' emerging from the
nebula center and several intersecting, arc-like features. From our CO data we
derive a mass of M>0.38[D/3kpc]^2 Msun and an expansion velocity v_exp=17km/s
for the molecular envelope. The density in the halo follows a radial power-law
proportional to r^-3, which is consistent with a mass-loss rate increasing with
time. Analysis of the NIR colors indicates the presence of a compact central
source of ~300-500K dust illuminating the nebula in addition to the central
star. Modeling of the thermal IR suggests a two-shell structure in the dust
envelope: 1) an outer shell with inner and outer radius R_in~1.6E16cm and
R_out>~1.25E17cm, dust temperature T_d~105-50K, and a mean mass-loss rate of
Mdot~1E-3Msun/yr; and 2) an inner shell with R_in~6.3E14cm, T_dust~500-105K,
and Mdot~3E-5Msun/yr. An additional population of big dust grains (radius
a>~0.4mm) with T_dust=150-20K and mass M_dust=(0.16-1.6)E-3 [D/3kpc]^2 Msun can
account for the observed sub-mm and mm flux excess. The mass of the envelope
enclosed within R_out=1.25E17cm derived from SED modeling is ~1[D/3kpc]^2 Msun.Comment: 46 pages, 14 figures, 3 tables, accepted for publication in ApJ.
Figures 12 & 13 in low resolution. Full resolution versions are available
upon request to the first autho
Decoherence suppression via environment preparation
To protect a quantum system from decoherence due to interaction with its
environment, we investigate the existence of initial states of the environment
allowing for decoherence-free evolution of the system. For models in which a
two-state system interacts with a dynamical environment, we prove that such
states exist if and only if the interaction and self-evolution Hamiltonians
share an eigenstate. If decoherence by state preparation is not possible, we
show that initial states minimizing decoherence result from a delicate
compromise between the environment and interaction dynamics.Comment: 4 pages, 2 figure
The Isaacson expansion in quantum cosmology
This paper is an application of the ideas of the Born-Oppenheimer (or
slow/fast) approximation in molecular physics and of the Isaacson (or
short-wave) approximation in classical gravity to the canonical quantization of
a perturbed minisuperspace model of the kind examined by Halliwell and Hawking.
Its aim is the clarification of the role of the semiclassical approximation and
the backreaction in such a model. Approximate solutions of the quantum model
are constructed which are not semiclassical, and semiclassical solutions in
which the quantum perturbations are highly excited.Comment: Revtex, 11 journal or 24 preprint pages. REPLACEMENT: A comment on
previous work by Dowker and Laflamme is corrected. Utah preprint
UU-REL-93/3/1
- …
