1,296 research outputs found

    Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method

    Get PDF
    Direct infusion nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry (DI nESI FT-ICR MS)offers high mass accuracy and resolution for analyzing complex metabolite mixtures. High dynamic range across a wide mass range, however, can only be achieved at the expense of mass accuracy, since the large numbers of ions entering the ICR detector induce adverse spacecharge effects. Here we report an optimized strategy for wide-scan DI nESI FT-ICR MS that increases dynamic range but maintains high mass accuracy. It comprises the collection if multiple adjacent selected ion monitoring (SIM) windows that are stitched together using novel algorithms. The final SIM-stitching method, derived from several optimization experiments, comprises 21 adjoining SIM windows each of width m/z 30 (from m/z 70 to 500; adjacent windows overlap by m/z 10) with an automated gain control (AGC) target of 1 105 charges. SIMstitching and wide-scan range (WSR; Thermo Electron)were compared using a defined standard to assess mass accuracy and a liver extract to assess peak count and dynamic range. SIM-stitching decreased the maximum mass error by 1.3- and 4.3-fold, and increased the peak count by 5.3- and 1.8-fold, versus WSR (AGC targets of 1 x 105 and 5 x 105, respectively). SIM-stitching achieved an rms mass error of 0.18 ppm and detected over 3000 peaks in liver extract. This novel approach increases metabolome coverage, has very high mass accuracy, and at 5.5 min/sample is conducive for high- throughput metabolomics

    A holistic multi-scale approach to using 3D scanning technology in accident reconstruction

    Get PDF
    Three-dimensional scanning and documentation methods are becoming increasingly employed by law enforcement personnel for crime scene and accident scene recording. Three-dimensional documentation of the victim’s body in such cases is also increasingly used as the field of forensic radiology and imaging is expanding rapidly. These scanning technologies enable a more complete and detailed documentation than standard autopsy. This was used to examine a fatal pedestrian-vehicle collision where the pedestrian was killed by a van whilst crossing the road. Two competing scenarios were considered for the vehicle speed calculation: the pedestrian being projected forward by the impact or the pedestrian being carried on the vehicle’s bonnet. In order to assist with this, the impact area of the accident vehicle was scanned using laser surface scanning, the victim was scanned using postmortem CT and micro-CT and the data sets were combined to virtually match features of the vehicle to injuries on the victim. Micro-CT revealed additional injuries not previously detected, lending support to the pedestrian-carry theory

    Development of a Classical Force Field for the Oxidised Si Surface: Application to Hydrophilic Wafer Bonding

    Full text link
    We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidised Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO2 polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress and interactions with single water molecules of a natively oxidised Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidised and amorphous silica surfaces of 97 mJ/m2 and 90mJ/m2, respectively, at a water adsorption coverage of approximately 1 monolayer. The difference arises from the stronger interaction of the natively oxidised surface with liquid water, resulting in a higher heat of immersion (203 mJ/m2 vs. 166 mJ/m2), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller density with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account

    Examining the learning effects of live streaming video game instruction over Twitch

    Get PDF
    Technology facilitates advances in learning and drives learning paradigms. One recent innovation is Twitchℱ, an online streaming platform often used for video game tutorials but also enables amateur online instruction (Hamilton, Garretson, & Kerne, 2014)). Twitch represents a unique learning paradigm that is not perfectly represented in previous technologies because of its “ground-up” evolution and the opportunity for novice instructors to educate mass audiences in real-time over the Internet while enabling interaction between teachers and learners and among learners. The purpose of this research is to empirically examine the efficacy of Twitch as a learning platform by manipulating each of the key characteristics of Twitch and to understand the conditions in which novice instructors may be beneficial. Drawing from Cognitive Load Theory, we demonstrate the worked-example effect in the Twitch environment by manipulating teacher-learner-learner interactions, live versus recorded streaming, and expert-versus novice-based instruction. Based on a laboratory experiment involving 350 participants, we found that learning performance under novice instructors was at least as good as that of experts. However, an exploratory analysis of learner personalities revealed that extroverts benefit only when learner-learner interaction is enabled. Surprisingly, those who are highly agreeable and less neurotic benefited more from novice instructors

    Development and Validation of the Information Systems Creative-Self-Efficacy Scale

    Get PDF
    High-performing information systems (IS) professionals harness creativity as they build systems to solve new and unstructured business problems. Psychology has developed useful scales and techniques for measuring creativity. However, being creative is not sufficient. IS professionals must also have confidence in their creative ability to succeed. The belief in one’s ability to be creative is termed creative self-efficacy (CreaSE). CreaSE is defined in the general business context, but scales are not thoroughly developed or refined. CreaSE has also never been studied in the IS context. We detail steps to develop and validate a theoretically-based measure of CreaSE as related to IS. Our process includes six datasets collected during refinement. Participants include business and IS students, online respondents, university professors, IS executives, and IS professionals. The validated instrument is a second-order formative measure with reflective first-order sub-constructs based on belief in cognitive ability, affect, domain knowledge, skills, and understanding of people

    Validation of an abbreviated Treatment Satisfaction Questionnaire for Medication (TSQM-9) among patients on antihypertensive medications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The 14-item Treatment Satisfaction Questionnaire for Medication (TSQM) Version 1.4 is a reliable and valid instrument to assess patients' satisfaction with medication, providing scores on four scales – side effects, effectiveness, convenience and global satisfaction. In naturalistic studies, administering the TSQM with the side effects domain could provoke the physician to assess the presence or absence of adverse events in a way that is clinically atypical, carrying the potential to interfere with routine medical care. As a result, an abbreviated 9-item TSQM (TSQM-9), derived from the TSQM Version 1.4 but without the five items of the side effects domain was created. In this study, an interactive voice response system (IVRS)-administered TSQM-9 was psychometrically evaluated among patients taking antihypertensive medication.</p> <p>Methods</p> <p>A total of 3,387 subjects were invited to participate in the study from an online panel who self-reported taking a prescribed antihypertensive medication. The subjects were asked to complete the IVRS-administered TSQM-9 at the start of the study, along with the modified Morisky scale, and again within 7 to 14 days. Standard psychometric analyses were conducted; including Cronbach's alpha, intraclass correlation coefficients, structural equation modeling, Spearman correlation coefficients and analysis of covariance (ANCOVA).</p> <p>Results</p> <p>A total of 396 subjects completed all the study procedures. Approximately 50% subjects were male with a good racial/ethnic mix: 58.3% white, 18.9% black, 17.7% Hispanic and 5.1% either Asian or other. There was evidence of construct validity of the TSQM-9 based on the structural equation modeling findings of the observed data fitting the Decisional Balance Model of Treatment Satisfaction even without the side effects domain. TSQM-9 domains had high internal consistency as evident from Cronbach's alpha values of 0.84 and greater. TSQM-9 domains also demonstrated good test-retest reliability with high intraclass correlation coefficients exceeding 0.70. As expected, the TSQM-9 domains were able to differentiate between individuals who were low, medium and high compliers of medication, with moderate to high effect sizes. There was evidence of convergent validity with significant correlations with the medication adherence scale.</p> <p>Conclusion</p> <p>The IVRS-administered TSQM-9 was found to be a reliable and valid measure to assess treatment satisfaction in naturalistic study designs, in which there is potential that the administration of the side effects domain of the TSQM would interfere with routine clinical care.</p

    A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink

    Get PDF
    The Atlantic Ocean is one of the most important sinks for atmospheric carbon dioxide (CO2), but this sink has been shown to vary substantially in time. Here we use surface ocean CO2 observations to estimate this sink and the temporal variability from 1998 through 2007 in the Atlantic Ocean. We benefit from (i) a continuous improvement of the observations, i.e. the Surface Ocean CO2 Atlas (SOCAT) v1.5 database and (ii) a newly developed technique to interpolate the observations in space and time. In particular, we use a two-step neural network approach to reconstruct basin-wide monthly maps of the sea surface partial pressure of CO2 (pCO2) at a resolution of 1° × 1°. From those, we compute the air–sea CO2 flux maps using a standard gas exchange parameterization and high-resolution wind speeds. The neural networks fit the observed pCO2 data with a root mean square error (RMSE) of about 10 ÎŒatm and with almost no bias. A check against independent time-series data and new data from SOCAT v2 reveals a larger RMSE of 22.8 ÎŒatm for the entire Atlantic Ocean, which decreases to 16.3 ÎŒatm for data south of 40° N. We estimate a decadal mean uptake flux of −0.45 ± 0.15 Pg C yr−1 for the Atlantic between 44° S and 79° N, representing the sum of a strong uptake north of 18° N (−0.39 ± 0.10 Pg C yr−1), outgassing in the tropics (18° S–18° N, 0.11 ± 0.07 Pg C yr−1), and uptake in the subtropical/temperate South Atlantic south of 18° S (−0.16 ± 0.06 Pg C yr−1), consistent with recent studies. The strongest seasonal variability of the CO2 flux occurs in the temperature-driven subtropical North Atlantic, with uptake in winter and outgassing in summer. The seasonal cycle is antiphased in the subpolar latitudes relative to the subtropics largely as a result of the biologically driven winter-to-summer drawdown of CO2. Over the 10 yr analysis period (1998 through 2007), sea surface pCO2 increased faster than that of the atmosphere in large areas poleward of 40° N, while in other regions of the North Atlantic the sea surface pCO2 increased at a slower rate, resulting in a barely changing Atlantic carbon sink north of the Equator (−0.01 ± 0.02 Pg C yr−1 decade−1). Surface ocean pCO2 increased at a slower rate relative to atmospheric CO2 over most of the Atlantic south of the Equator, leading to a substantial trend toward a stronger CO2 sink for the entire South Atlantic (−0.14 ± 0.02 Pg C yr−1 decade−1). In contrast to the 10 yr trends, the Atlantic Ocean carbon sink varies relatively little on inter-annual timescales (±0.04 Pg C yr−1; 1 σ)

    Infarct size and left ventricular remodelling after preventive percutaneous coronary intervention

    Get PDF
    Objective: We hypothesised that, compared with culprit-only primary percutaneous coronary intervention (PCI), additional preventive PCI in selected patients with ST-elevation myocardial infarction with multivessel disease would not be associated with iatrogenic myocardial infarction, and would be associated with reductions in left ventricular (LV) volumes in the longer term. Methods: In the preventive angioplasty in myocardial infarction trial (PRAMI; ISRCTN73028481), cardiac magnetic resonance (CMR) was prespecified in two centres and performed (median, IQR) 3 (1, 5) and 209 (189, 957) days after primary PCI. Results: From 219 enrolled patients in two sites, 84% underwent CMR. 42 (50%) were randomised to culprit-artery-only PCI and 42 (50%) were randomised to preventive PCI. Follow-up CMR scans were available in 72 (86%) patients. There were two (4.8%) cases of procedure-related myocardial infarction in the preventive PCI group. The culprit-artery-only group had a higher proportion of anterior myocardial infarctions (MIs) (55% vs 24%). Infarct sizes (% LV mass) at baseline and follow-up were similar. At follow-up, there was no difference in LV ejection fraction (%, median (IQR), (culprit-artery-only PCI vs preventive PCI) 51.7 (42.9, 60.2) vs 54.4 (49.3, 62.8), p=0.23), LV end-diastolic volume (mL/m2, 69.3 (59.4, 79.9) vs 66.1 (54.7, 73.7), p=0.48) and LV end-systolic volume (mL/m2, 31.8 (24.4, 43.0) vs 30.7 (23.0, 36.3), p=0.20). Non-culprit angiographic lesions had low-risk Syntax scores and 47% had non-complex characteristics. Conclusions: Compared with culprit-only PCI, non-infarct-artery MI in the preventive PCI strategy was uncommon and LV volumes and ejection fraction were similar

    Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells

    Get PDF
    Special AT-rich sequence-binding protein 1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating major histocompatibility complex class II (MHC II) expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46(+) inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression.Fil: Tesone, Amelia J.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Rutkowski, Melanie R.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Brencicova, Eva. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Svoronos, Nikolaos. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Perales Puchal, Alfredo. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Stephen, Tom L.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Allegrezza, Michael J.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Payne, Kyle K.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Nguyen, Jenny M.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Wickramasinghe, Jayamanna. The Wistar Institute. Center for Systems and Computational Biology; Estados UnidosFil: Tchou, Julia. University of Pennsylvania; Estados UnidosFil: Borowsky, Mark E.. Christiana Care Health System. Helen F. Graham Cancer Center; Estados UnidosFil: Rabinovich, Gabriel Adriån. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Kossenkov, Andrew V.. The Wistar Institute. Center for Systems and Computational Biology; Estados UnidosFil: Conejo Garcia, José R.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados Unido
    • 

    corecore