14,478 research outputs found

    Gravitational waves from an accreting neutron star with a magnetic mountain

    Get PDF
    We calculate the amplitude of gravitational waves from a neutron star accreting symmetrically at its magnetic poles. The magnetic field, which is compressed into an equatorial belt during accretion, confines accreted matter in a mountain at the magnetic pole, producing gravitational waves. We compute hydromagnetic equilibria and the corresponding quadrupole moment as a function of the accreted mass, Ma, finding the polarization- and orientation- averaged wave strain at Earth to be h_c = 6.3 × 10^(–25)(M_a/10^(–5)M_☉)(ƒ/0.6kHz)^2(d/1kpc)^(–1) for a range of conditions, where ƒ is the wave frequency and d is the distance to the source. This is ~ 10^2 times greater than previous estimates, which failed to treat the mass-flux distribution self-consistently with respect to flux-freezin

    Spectroscopy of drums and quantum billiards: perturbative and non-perturbative results

    Full text link
    We develop powerful numerical and analytical techniques for the solution of the Helmholtz equation on general domains. We prove two theorems: the first theorem provides an exact formula for the ground state of an arbirtrary membrane, while the second theorem generalizes this result to any excited state of the membrane. We also develop a systematic perturbative scheme which can be used to study the small deformations of a membrane of circular or square shapes. We discuss several applications, obtaining numerical and analytical results.Comment: 29 pages, 12 figures, 7 tabl

    Fabrication and evaluation of advanced titanium and composite structural panels

    Get PDF
    Advanced manufacturing methods for titanium and composite material structures are being developed and evaluated. The focus for the manufacturing effort is the fabrication of full-scale structural panels which replace an existing shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves design, fabrication, ground testing, and Mach 3 flight service of full-scale structural panels and laboratory testing of representative structural element specimens

    The accelerating influence of humans on mammalian macroecological patterns over the late Quaternary

    Get PDF
    The transition of hominins to a largely meat-based diet ~1.8 million years ago led to the exploitation of other mammals for food and resources. As hominins, particularly archaic and modern humans, became increasingly abundant and dispersed across the globe, a temporally and spatially transgressive extinction of large-bodied mammals followed; the degree of selectivity was unprecedented in the Cenozoic fossil record. Today, most remaining large-bodied mammal species are confined to Africa, where they coevolved with hominins. Here, using a comprehensive global dataset of mammal distribution, life history and ecology, we examine the consequences of “body size downgrading” of mammals over the late Quaternary on fundamental macroecological patterns. Specifically, we examine changes in species diversity, global and continental body size distributions, allometric scaling of geographic range size with body mass, and the scaling of maximum body size with area. Moreover, we project these patterns toward a potential future scenario in which all mammals currently listed as vulnerable on the IUCN\u27s Red List are extirpated. Our analysis demonstrates that anthropogenic impact on earth systems predates the terminal Pleistocene and has grown as populations increased and humans have become more widespread. Moreover, owing to the disproportionate influence on ecosystem structure and function of megafauna, past and present body size downgrading has reshaped Earth\u27s biosphere. Thus, macroecological studies based only on modern species yield distorted results, which are not representative of the patterns present for most of mammal evolution. Our review supports the concept of benchmarking the “Anthropocene” with the earliest activities of Homo sapiens

    New Consequences of Induced Transparency in a Double-Lambda scheme: Destructive Interference In Four-wave Mixing

    Full text link
    We investigate a four-state system interacting with long and short laser pulses in a weak probe beam approximation. We show that when all lasers are tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM) field is strongly absorbed. The part which is not absorbed has the exact intensity required to destructively interfere with the excitation pathway involved in producing the FWM state. We show that with this three-photon destructive interference, the conversion efficiency can still be as high as 25%. Contrary to common belief,our calculation shows that this process, where an ideal one-photon electromagnetically induced transparency is established, is not most suitable for high efficiency conversion. With appropriate phase-matching and propagation distance, and when the three-photon destructive interference does not occur, we show that the photon flux conversion efficiency is independent of probe intensity and can be close to 100%. In addition, we show clearly that the conversion efficiency is not determined by the maximum atomic coherence between two lower excited states, as commonly believed. It is the combination of phase-matching and constructive interference involving the two terms arising in producing the mixing wave that is the key element for the optimized FWM generation. Indeed, in this scheme no appreciable excited state is produced, so that the atomic coherence between states |0> and |2> is always very small.Comment: Submitted to Phys. Rev. A, 7 pages, 4 figure

    Transient abnormal myelopoesis in an infant with Down syndrome

    Get PDF
    No Abstract

    General implementation of all possible positive-operator-value measurements of single photon polarization states

    Full text link
    Positive Operator Value Measures (POVMs) are the most general class of quantum measurements. We propose a setup in which all possible POVMs of a single photon polarization state (corresponding to all possible sets of two-dimensional Kraus operators) can be implemented easily using linear optics elements. This method makes it possible to experimentally realize any projective orthogonal, projective non-orthogonal or non-projective sets of any number of POVM operators. Furthermore our implementation only requires vacuum ancillas, and is deterministic rather than probabilistic. Thus it realizes every POVM with the correct set of output states. We give the settings required to implement two different well-known non-orthogonal projective POVMs.Comment: 5 pages, newer version with minor addition

    Upper atmosphere research: Reaction rate and optical measurements

    Get PDF
    The objective is to provide photochemical, kinetic, and spectroscopic information necessary for photochemical models of the Earth's upper atmosphere and to examine reactions or reactants not presently in the models to either confirm the correctness of their exclusion or provide evidence to justify future inclusion in the models. New initiatives are being taken in technique development (many of them laser based) and in the application of established techniques to address gaps in the photochemical/kinetic data base, as well as to provide increasingly reliable information
    corecore