21 research outputs found

    Microbiology and the limits to life in deep salts

    Get PDF
    Deep subsurface evaporites are common terrestrial deep subsurface environments found globally. These deposits are known to host communities of halophilic organisms, some of which have been suggested to be millions of years old. The discovery of evaporite minerals on Mars has led to these environments becoming of interest to astrobiology, particularly because the subsurface of Mars represents the best chance of finding more clement conditions conducive to life. Despite this interest, deep subsurface evaporites remain poorly understood and we have little insight into how different salts shape the Earth’s biosphere, much of which is underground. This thesis addresses several knowledge gaps present in the literature by sampling a selection of brine seeps and rock salt samples taken from Boulby Potash Mine, UK. The origin and evolution of the brines is determined with geochemical techniques, showing the majority to have been sourced from an aquifer above where they were intersected in the mine. These brines appear to have taken a variety of pathways through the subsurface leading to the presence of a range of different ions dissolved within them. The majority are Na/Cl dominated, whilst one is K/Cl dominated. One brine appears to have a different origin and probably interacted with dolomite becoming very concentrated in Mg. This variety in brine origins and migration pathways has impacted the habitability of the brines. Physicochemical measurements for chaotropicity, water activity and ionic strength, combined with culturing experiments suggest brines from the Sherwood Sandstone were habitable, but the brine from a distinct unknown source was uninhabitable. DNA was successfully extracted from three of the habitable brines and their metagenomes sequenced. These revealed communities largely functionally and phylogenetically similar to surface near saturation brines, indicating that the structure of the communities present in saturated Na/Cl brines are controlled almost exclusively by these ions rather than any other environmental difference between the surface and subsurface. Organisms were also taken from these brines and culturing experiments carried out to determine if any carbon sources were present in ancient salt that might promote growth in the absence of other carbon sources. Controls showed that the geochemical changes to the growth media induced by solving the salts, particularly sylvinite, were responsible for the increases in growth observed, indicating certain salt minerals effectively fertilise the growth of halophiles. Culturing on hydrocarbon seeps collected in the mine suggested they may provide a carbon source periodically to some organisms within the deposit. Work was done to show the presence of dissimilatory sulphate and iron reducing halophiles. Overall this significantly advances our understanding of how salts shape the Earth’s biosphere, particularly its deep subsurface component, and what functional capabilities life has to persist in these environments. This work provides a new window on the potential habitability of deep subsurface extraterrestrial environments and how we might go about investigating these environments for habitable conditions

    The UK Centre for Astrobiology:A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011-2016

    Get PDF
    Authors thank all those individuals, UK research councils, funding agencies, nonprofit organisations, companies and corporations and UK and non-UK government agencies, who have so generously supported our aspirations and hopes over the last 5 years and supported UKCA projects. They include the STFC, the Engineering and Physical Sciences Research Council (EPSRC), the Natural Environmental Research Council (NERC), the EU, the UK Space Agency, NASA, the European Space Agency (ESA), The Crown Estate, Cleveland Potash and others. The Astrobiology Academy has been supported by the UK Space Agency (UKSA), National Space Centre, the Science and Technology Facilities Council (STFC), Dynamic Earth, The Royal Astronomical Society, The Rotary Club (Shetlands) and the NASA Astrobiology Institute.The UK Centre for Astrobiology (UKCA) was set up in 2011 as a virtual center to contribute to astrobiology research, education, and outreach. After 5 years, we describe this center and its work in each of these areas. Its research has focused on studying life in extreme environments, the limits of life on Earth, and implications for habitability elsewhere. Among its research infrastructure projects, UKCA has assembled an underground astrobiology laboratory that has hosted a deep subsurface planetary analog program, and it has developed new flow-through systems to study extraterrestrial aqueous environments. UKCA has used this research backdrop to develop education programs in astrobiology, including a massive open online course in astrobiology that has attracted over 120,000 students, a teacher training program, and an initiative to take astrobiology into prisons. In this paper, we review these activities and others with a particular focus on providing lessons to others who may consider setting up an astrobiology center, institute, or science facility. We discuss experience in integrating astrobiology research into teaching and education activities.Publisher PDFPeer reviewe

    A Low-Diversity Microbiota Inhabits Extreme Terrestrial Basaltic Terrains and Their Fumaroles : Implications for the Exploration of Mars

    Get PDF
    A major objective in the exploration of Mars is to test the hypothesis that the planet hosted life. Even in the absence of life, the mapping of habitable and uninhabitable environments is an essential task in developing a complete understanding of the geological and aqueous history of Mars and, as a consequence, understanding what factors caused Earth to take a different trajectory of biological potential. We carried out the aseptic collection of samples and comparison of the bacterial and archaeal communities associated with basaltic fumaroles and rocks of varying weathering states in Hawai'i to test four hypotheses concerning the diversity of life in these environments. Using high-throughput sequencing, we found that all these materials are inhabited by a low-diversity biota. Multivariate analyses of bacterial community data showed a clear separation between sites that have active fumaroles and other sites that comprised relict fumaroles, unaltered, and syn-emplacement basalts. Contrary to our hypothesis that high water flow environments, such as fumaroles with active mineral leaching, would be sites of high biological diversity, alpha diversity was lower in active fumaroles compared to relict or nonfumarolic sites, potentially due to high-temperature constraints on microbial diversity in fumarolic sites. A comparison of these data with communities inhabiting unaltered and weathered basaltic rocks in Idaho suggests that bacterial taxon composition of basaltic materials varies between sites, although the archaeal communities were similar in Hawai'i and Idaho. The taxa present in both sites suggest that most of them obtain organic carbon compounds from the atmosphere and from phototrophs and that some of them, including archaeal taxa, cycle fixed nitrogen. The low diversity shows that, on Earth, extreme basaltic terrains are environments on the edge of sustaining life with implications for the biological potential of similar environments on Mars and their exploration by robots and humans.Peer reviewe

    Planetary science and exploration in the deep subsurface: results from the MINAR Program, Boulby Mine, UK

    Get PDF
    The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research – MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining

    ANALOG-1 ISS - The first part of an analogue mission to guide ESA's robotic moon exploration efforts

    Get PDF
    The METERON project is a European initiative to prepare for future human-robotic exploration missions to the Moon, Mars and other celestial bodies. The project aims to implement infrastructure and tools to test and evaluate communications, operations and robotic control strategies in the context of future exploration missions. It is in collaboration between three directorates of the European Space Agency (ESA); Human and Robotic Exploration (HRE), Technology, Engineering and Quality (TEC), Operations (OPS). This paper presents the first part of the on-going ANALOG-1 experiment which is the culmination of the METERON project, implementing the knowledge gained in the 12 distinct METERON experiments between 2011 and 2020. These all address aspects of teleoperating a robotic asset from an orbital platform, i.e. technical implementation, user interfaces, autonomy and operations. The ANALOG-1 technology demonstration and operations concept experiment is based upon the surface mission scenario segment of the notional EL3 sample return mission. This segment focuses on the control of a lunar surface robotic asset from the Earth and from the Lunar Gateway. In November 2019, the first part of this experiment was successfully completed from the ISS. It assessed the effectiveness of a state-of-the-art robotic control interface to control a complex mobile robot from orbit, as well as evaluating the scientific interactions, during robotic-assisted geology exploration, between crew in orbit and scientists on the ground. Luca Parmitano drove this robot in a lunar analogue site in the Netherlands, and controlled its arms, while he was on the ISS. For this experiment, a complex control station had been installed on the ISS, including a sigma.7 haptic device. This device allowed the astronaut to feel forces felt by the robotic arm. The experiment demonstrated the advantage of having an immersive control station and high level of robotic dexterity, with Luca finishing all his assigned and secondary geology targets ahead of time. The second part of Analog-1 extends the ISS experiment with a full ground-based analogue, in which further technical experiments and a full mission scenario will be played out. The analogue is in cooperation with the DLR ARCHES space demo mission, and includes a rover operations centre based at ESOC as well as an outdoor lunar analogue site on Mount Etna. The astronaut, in this case, is on ground. We expect to further demonstrate the advantages of a state-of-the art interface for both fully teleoperated and semi-autonomous rover and robotic arm control for lunar missions, in order to guide ESA's Moon exploration efforts

    METERON Analog-1: A Touch Remote

    Get PDF
    The METERON project (Multipurpose End-To-End Robotics Operations Network) was implemented by the European Space Agency as an initiative to prepare Europe for future humanrobotic exploration scenarios that in particular, focused on examination of the human-robotic partnership, and how this partnership could be optimized through an evaluation of the tools and methodologies utilized in the experiments in the domains of operations, communications and robotics (specifically with respect to control strategies)
    corecore