609 research outputs found
Random interactions and spin-glass thermodynamic transition in the hole-doped Haldane system YCaBaNiO
Magnetization, DC and AC bulk susceptibility of the =1 Haldane chain
system doped with electronic holes, YCaBaNiO
(0x0.20), have been measured and analyzed. The most striking
results are (i) a sub-Curie power law behavior of the linear susceptibility,
, for temperature lower than the Haldane gap
of the undoped compound (x=0) (ii) the existence of a spin-glass thermodynamic
transition at = 2-3 K. These findings are consistent with (i) random
couplings within the chains between the spin degrees of freedom induced by hole
doping, (ii) the existence of ferromagnetic bonds that induce magnetic
frustration when interchain interactions come into play at low temperature.Comment: 4 pages, 4 figures, to appear in Phys. Rev.
Gauge Invariant Factorisation and Canonical Quantisation of Topologically Massive Gauge Theories in Any Dimension
Abelian topologically massive gauge theories (TMGT) provide a topological
mechanism to generate mass for a bosonic p-tensor field in any spacetime
dimension. These theories include the 2+1 dimensional Maxwell-Chern-Simons and
3+1 dimensional Cremmer-Scherk actions as particular cases. Within the
Hamiltonian formulation, the embedded topological field theory (TFT) sector
related to the topological mass term is not manifest in the original phase
space. However through an appropriate canonical transformation, a gauge
invariant factorisation of phase space into two orthogonal sectors is feasible.
The first of these sectors includes canonically conjugate gauge invariant
variables with free massive excitations. The second sector, which decouples
from the total Hamiltonian, is equivalent to the phase space description of the
associated non dynamical pure TFT. Within canonical quantisation, a likewise
factorisation of quantum states thus arises for the full spectrum of TMGT in
any dimension. This new factorisation scheme also enables a definition of the
usual projection from TMGT onto topological quantum field theories in a most
natural and transparent way. None of these results rely on any gauge fixing
procedure whatsoever.Comment: 1+25 pages, no figure
Evidence for local lattice distortions in giant magnetocapacitive CdCr2S4
Raman scattering experiments on CdCr2S4 single crystals show pronounced
anomalies in intensity and frequency of optical phonon modes with an onset
temperature T*=130 K that coincides with the regime of giant magnetocapacitive
effects. A loss of inversion symmetry and Cr off-centering are deduced from the
observation of longitudinal optical and formerly infrared active modes for
T<T_c=84 K. The intensity anomalies are attributed to the enhanced electronic
polarizability of displacements that modulate the Cr-S distance and respective
hybridization. Photo doping leads to an annihilation of the symmetry reduction.
Our scenario of multiferroic effects is based on the near degeneracy of polar
and nonpolar modes and the additional low energy scale due to hybridization.Comment: 4 pages, 6 figure
Anomalous spectral weight in photoemission spectra of the hole doped Haldane chain Y2-xSrxBaNiO5
In this paper, we present photoemission experiments on the hole doped Haldane
chain compound . By using the photon energy dependence of
the photoemission cross section, we identified the symmetry of the first
ionisation states (d type). Hole doping in this system leads to a significant
increase in the spectral weight at the top of the valence band without any
change in the vicinity of the Fermi energy. This behavior, not observed in
other charge transfer oxides at low doping level, could result from the
inhomogeneous character of the doped system and from a Ni 3d-O 2p hybridization
enhancement due to the shortening of the relevant Ni-O distance in the
localized hole-doped regions.Comment: 5 pages, 4 figure
Comparison of S=0 and S=1/2 Impurities in Haldane Chain Compound,
We present the effect of Zn (S=0) and Cu (S=1/2) substitution at the Ni site
of S=1 Haldane chain compound . Y NMR allows us to
measure the local magnetic susceptibility at different distances from the
defects. The Y NMR spectrum consists of one central peak and several
less intense satellite peaks. The shift of the central peak measures the
uniform susceptibility, which displays a Haldane gap 100 K and it
corresponds to an AF coupling J260 K between the near-neighbor Ni spins.
Zn or Cu substitution does not affect the Haldane gap. The satellites, which
are evenly distributed on the two sides of the central peak, probe the
antiferromagnetic staggered magnetization near the substituted site, which
decays exponentially. Its extension is found identical for both impurities and
corresponds accurately to the correlation length (T) determined by Monte
Carlo (QMC) simulations for the pure compound. In the case of non-magnetic Zn,
the temperature dependence of the induced magnetization is consistent with a
Curie law with an "effective" spin S=0.4 on each side of Zn, which is well
accounted by Quantum Monte Carlo computations of the spinless-defect-induced
magnetism. In the case of magnetic Cu, the similarity of the induced magnetism
to the Zn case implies a weak coupling of the Cu spin to the nearest- neighbor
Ni spins. The slight reductionin the induced polarization with respect to Zn is
reproduced by QMC computations by considering an antiferromagnetic coupling of
strength J'=0.1-0.2 J between the S=1/2 Cu-spin and nearest-neighbor Ni-spin.Comment: 15 pages, 18 figures, submitted to Physical Review
Singlet Ground State of the Quantum Antiferromagnet Ba3CuSb2O9
We present local probe results on the honeycomb lattice antiferromagnet
Ba3CuSb2O9. Muon spin relaxation measurements in zero field down to 20 mK show
unequivocally that there is a total absence of spin freezing in the ground
state. Sb NMR measurements allow us to track the intrinsic susceptibility of
the lattice, which shows a maximum at around 55 K and drops to zero in the
low-temperature limit. The spin-lattice relaxation rate shows two
characteristic energy scales, including a field-dependent crossover to
exponential low-temperature behavior, implying gapped magnetic excitations.Comment: Accepted for publication in Physical Review Letter
Understanding lactatemia in human sepsis potential impact for early management
Rationale: Hyperlactatemia in sepsis may derive from a prevalent impairment of oxygen supply/demand and/or oxygen use. Discriminating between these two mechanisms may be relevant for the early fluid resuscitation strategy. Objectives: To understand the relationship among central venous oxygen saturation (ScvO2), lactate, and base excess to better determine the origin of lactate. Methods: This was a post hoc analysis of baseline variables of 1,741 patients with sepsis enrolled in the multicenter trial ALBIOS (Albumin ItalianOutcome Sepsis). Variableswere analyzed as a function of sextiles of lactate concentration and sextiles of ScvO2.Wedefined the "alactic base excess," as the sum of lactate and standard base excess. Measurements and Main Results: Organ dysfunction severity scores, physiologic variables of hepatic, metabolic, cardiac, and renal function, and 90-day mortality were measured. ScvO2 was lower than 70% only in 35% of patients. Mortality, organ dysfunction scores, and lactate were highest in the first and sixth sextiles of ScvO2. Although lactate level related strongly to mortality, it was associated with acidemia only when kidney function was impaired (creatinine >2 mg/dl), as rapidly detected by a negative alactic base excess. In contrast, positive values of alactic base excess were associated with a relative reduction of fluid balance. Conclusions: Hyperlactatemia is powerfully correlated with severity of sepsis and, in established sepsis, is caused more frequently by impaired tissue oxygen use, rather than by impaired oxygen transport. Concomitant acidemia was only observed in the presence of renal dysfunction, as rapidly detected by alactic base excess. The current strategy of fluid resuscitation could be modified according to the origin of excess lactate
Magnetization profiles and NMR spectra of doped Haldane chains at finite temperatures
Open segments of S=1 antiferromagnetic spin chains are studied at finite
temperatures and fields using continuous time Quantum Monte Carlo techniques.
By calculating the resulting magnetization profiles for a large range of chain
lengths with fixed field and temperature we reconstruct the experimentally
measured NMR spectrum of impurity doped YBaNiMgO. For
temperatures above the gap the calculated NMR spectra are in excellent
agreement with the experimental results, confirming the existence of
excitations at the end of open S=1 chain segments. At temperatures below the
gap, neglecting inter chain couplings, we still find well defined peaks in the
calculated NMR spectra corresponding to the chain end excitations. At
low temperatures, inter chain couplings could be important, resulting in a more
complicated phase.Comment: 7 pages, 5 figures, minor correction
Dynamics and transport in random quantum systems governed by strong-randomness fixed points
We present results on the low-frequency dynamical and transport properties of
random quantum systems whose low temperature (), low-energy behavior is
controlled by strong disorder fixed points. We obtain the momentum and
frequency dependent dynamic structure factor in the Random Singlet (RS) phases
of both spin-1/2 and spin-1 random antiferromagnetic chains, as well as in the
Random Dimer (RD) and Ising Antiferromagnetic (IAF) phases of spin-1/2 random
antiferromagnetic chains. We show that the RS phases are unusual `spin metals'
with divergent low-frequency spin conductivity at T=0, and we also follow the
conductivity through novel `metal-insulator' transitions tuned by the strength
of dimerization or Ising anisotropy in the spin-1/2 case, and by the strength
of disorder in the spin-1 case. We work out the average spin and energy
autocorrelations in the one-dimensional random transverse field Ising model in
the vicinity of its quantum critical point. All of the above calculations are
valid in the frequency dominated regime \omega \agt T, and rely on previously
available renormalization group schemes that describe these systems in terms of
the properties of certain strong-disorder fixed point theories. In addition, we
obtain some information about the behavior of the dynamic structure factor and
dynamical conductivity in the opposite `hydrodynamic' regime for
the special case of spin-1/2 chains close to the planar limit (the quantum x-y
model) by analyzing the corresponding quantities in an equivalent model of
spinless fermions with weak repulsive interactions and particle-hole symmetric
disorder.Comment: Long version (with many additional results) of Phys. Rev. Lett. {\bf
84}, 3434 (2000) (available as cond-mat/9904290); two-column format, 33 pages
and 8 figure
- …