530 research outputs found

    Expert opinion on managing chronic HCV in patients with mixed cryoglobulinaemia vasculitis

    Get PDF
    International audienceMixed cryoglobulinaemia vasculitis (CryoVas) is a small-vessel systemic vasculitis caused by deposition of mixed cryoglobulins and is characterized by a wide range of clinical symptoms. HCV is the primary cause of CryoVas, which is associated with significant morbidity and mortality. The mortality rate among patients with HCV-associated CryoVas is 3× that of the general population, with a 63% 10-year survival rate. First-line treatment for CryoVas is anti-HCV therapy because viral clearance is associated with clinical improvement. The introduction of highly effective, interferon-free, direct-acting antiviral regimens provides additional treatment options for these patients. Here, we review recent studies investigating the effect of antiviral therapy on HCV-associated CryoVas and provide expert opinion for health-care professionals managing these patients

    Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents

    Get PDF
    Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs

    Long-term effects of treatment and response in patients with chronic hepatitis C on quality of life. An international, multicenter, randomized, controlled study

    Get PDF
    Background: Hepatitis C decreases health related quality of life (HRQL) which is further diminished by antiviral therapy. HRQL improves after successful treatment. This trial explores the course of and factors associated with HRQL in patients given individualized or standard treatment based on early treatment response (Ditto-study). Methods: The Short Form (SF)-36 Health Survey was administered at baseline (n = 192) and 24 weeks after the end of therapy (n = 128). Results: At baseline HRQL was influenced by age, participating center, severity of liver disease and income. Exploring the course of HRQL (scores at follow up minus baseline), only the dimension general health increased. In this dimension patients with a relapse or sustained response differed from non-responders. Men and women differed in the dimension bodily pain. Treatment schedule did not influence the course of HRQL. Conclusions: Main determinants of HRQL were severity of liver disease, age, gender, participating center and response to treatment. Our results do not exclude a more profound negative impact of individualized treatment compared to standard, possibly caused by higher doses and extended treatment duration in the individualized group. Antiviral therapy might have a more intense and more prolonged negative impact on females

    Sequencing of the Hepatitis C Virus: A Systematic Review

    Get PDF
    Since the identification of hepatitis C virus (HCV), viral sequencing has been important in understanding HCV classification, epidemiology, evolution, transmission clustering, treatment response and natural history. The length and diversity of the HCV genome has resulted in analysis of certain regions of the virus, however there has been little standardisation of protocols. This systematic review was undertaken to map the location and frequency of sequencing on the HCV genome in peer reviewed publications, with the aim to produce a database of sequencing primers and amplicons to inform future research. Medline and Scopus databases were searched for English language publications based on keyword/MeSH terms related to sequence analysis (9 terms) or HCV (3 terms), plus "primer" as a general search term. Exclusion criteria included non-HCV research, review articles, duplicate records, and incomplete description of HCV sequencing methods. The PCR primer locations of accepted publications were noted, and purpose of sequencing was determined. A total of 450 studies were accepted from the 2099 identified, with 629 HCV sequencing amplicons identified and mapped on the HCV genome. The most commonly sequenced region was the HVR-1 region, often utilised for studies of natural history, clustering/transmission, evolution and treatment response. Studies related to genotyping/classification or epidemiology of HCV genotype generally targeted the 5'UTR, Core and NS5B regions, while treatment response/resistance was assessed mainly in the NS3-NS5B region with emphasis on the Interferon sensitivity determining region (ISDR) region of NS5A. While the sequencing of HCV is generally constricted to certain regions of the HCV genome there is little consistency in the positioning of sequencing primers, with the exception of a few highly referenced manuscripts. This study demonstrates the heterogeneity of HCV sequencing, providing a comprehensive database of previously published primer sets to be utilised in future sequencing studies

    Hepatitis C virus genotype frequency in Isfahan province of Iran: a descriptive cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis C is an infectious disease affecting the liver, caused by the hepatitis C virus (HCV). The hepatitis C virus is a small, enveloped, single-stranded, positive sense RNA virus with a large genetic heterogeneity. Isolates have been classified into at least eleven major genotypes, based on a nucleotide sequence divergence of 30-35%. Genotypes 1, 2 and 3 circulate around the world, while other genotypes are mainly restricted to determined geographical areas. Genotype determination of HCV is clinically valuable as it provides important information which can be used to determine the type and duration of therapy and to predict the outcome of the disease.</p> <p>Results</p> <p>Plasma samples were collected from ninety seven HCV RNA positive patients admitted to two large medical laboratory centers in Isfahan province (Iran) from the years 2007 to 2009. Samples from patients were subjected to HCV genotype determination using a PCR based genotyping kit. The frequency of HCV genotypes was determined as follows: genotype 3a (61.2%), genotype 1a (29.5%), genotype 1b (5.1%), genotype 2 (2%) and mixed genotypes of 1a+3a (2%).</p> <p>Conclusion</p> <p>Genotype 3a is the most frequent followed by the genotype 1a, genotype 1b and genotype 2 in Isfahan province, Iran.</p

    Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome

    Get PDF
    The 5′-untranslated region of the hepatitis C virus (HCV) RNA contains a highly structured motif called IRES (Internal Ribosome Entry Site) responsible for the cap-independent initiation of the viral RNA translation. At first, the IRES binds to the 40S subunit without any initiation factors so that the initiation AUG codon falls into the P site. Here using an original site-directed cross-linking strategy, we identified 40S subunit components neighboring subdomain IIId, which is critical for HCV IRES binding to the subunit, and apical loop of domain II, which was suggested to contact the 40S subunit from data on cryo-electron microscopy of ribosomal complexes containing the HCV IRES. HCV IRES derivatives that bear a photoactivatable group at nucleotide A275 or at G263 in subdomain IIId cross-link to ribosomal proteins S3a, S14 and S16, and HCV IRES derivatized at the C83 in the apex of domain II cross-link to proteins S14 and S16

    Characterization of antibody-mediated neutralization directed against the hypervariable region 1 of hepatitis C virus E2 glycoprotein

    Get PDF
    The hypervariable region 1 (HVR1) comprising the first 27 aa of E2 glycoprotein is a target for neutralizing antibodies against hepatitis C virus (HCV), but the mechanisms of this neutralization in the cell-culture-infectious genotype 2a strain JFH1 HCV virus (HCVcc) system are unknown. Two rabbit polyclonal sera, R1020 and R140, recognizing the HVR1 of the genotype 1a isolates H77c and Glasgow (Gla), respectively, and a Gla HVR1-specific mouse mAb AP213 have been described previously. However, attempts to generate of antibodies to the JFH1 HVR1 were unsuccessful. Therefore, this study produced chimeric JFH1 HCVcc viruses harbouring the H77c or Gla HVR1 to assess the reactivity of antibodies to this region and their effects on virus infectivity. The inter-genotypic HVR1 swap did not significantly affect virus infectivity. The genotype 1a HVR1-specific antibodies neutralized chimeric viruses in an isolate-dependent manner, underlining the role of HVR1 in HCV infection. The neutralizing antibodies reacted mainly with the C-terminal portion of HVR1, and detailed mapping identified A17, F20 and Q21 in the Gla HVR1 sequence and T21 (and possibly L20) in the corresponding H77c sequence as key epitope residues for AP213 and R140, and R1020, respectively. Importantly, none of the antibodies inhibited in vitro binding of viral envelope glycoproteins to the best-characterized HCV receptor, CD81, or to the glycosaminoglycan attachment factors. However, the HVR1 antibodies were capable of post-attachment neutralization. Overall, this study emphasizes the role of HVR1 in HCVcc entry and provides new tools to study this region further in the context of complete virions
    corecore