112 research outputs found

    Comparative evaluation of root canal disinfection by conventional method and laser: An in vivo study

    Get PDF
    Objective: The aim of this study was to comparatively evaluate in vivo the disinfecting ability of conventional method and lasers in root canals.Materials and Methods: Study criteria included 60 single rooted teeth, which were indicated for root canal therapy followed to dental caries and trauma with intact crowns. Such selected patients were randomly divided into 2 groups, namely, GroupA(30 teeth) and Group B (30 teeth). All clinical procedures were carried out under strict aseptic precautions. The teeth in Group A were subjected to biomechanical preparation followed by the treatment with the help of diode laser containing the gallium aluminum and arsenic, which emitted 980 nm wavelengths. The teeth in Group B were treated with routine method of biomechanical preparation along with irrigation using sodium hypochlorite and hydrogen peroxide. The microbiological samples were taken immediately after the access preparation and after the completion of the root canal disinfection and were sent for microbiological analysis.Results: The teeth in Group A showed presence of common strains of bacteria ranging from Streptococci, Staphylococci, Klebsiella, and Pseudomonas. Reduction in the growth of microorganisms was found for all types of microorganisms. Only 8 samples exhibited the growth after treatment with laser. Results of Group B also showed the presence of common strains of anaerobic and aerobic bacteria as shown in earlier studies, predominantly Staphylococcus, Streptococci, and Pseudomonas. Statistical analysis showed non‑significant P values for the microorganisms; however, only 3 samples showed the growth after treatment with conventional technique using sodium hypochlorite and hydrogen peroxide.Conclusion: Conventional method by using sodium hypochlorite and hydrogen peroxide as irrigating solutions is highly effective in disinfecting the root canal. Lasers when used can also reduce the bacterial load of the infected root canal.Key words: Diode laser, endodontics, root canal disinfectio

    Nano-mechanical single-cell sensing of cell-matrix contacts

    Get PDF
    Extracellular protein matrices provide a rigidity interface exhibiting nano-mechanical cues that guide cell growth and proliferation. Cells sense such cues using actin-rich filopodia extensions which encourage favourable cell–matrix contacts to recruit more actin-mediated local forces into forming stable focal adhesions. A challenge remains in identifying and measuring these local cellular forces and in establishing empirical relationships between them, cell adhesion and filopodia formation. Here we investigate such relationships using a micromanipulation system designed to operate at the time scale of focal contact dynamics, with the sample frequency of a force probe being 0.1 ms, and to apply and measure forces at nano-to-micro Newton ranges for individual mammalian cells. We explore correlations between cell biomechanics, cell–matrix attachment forces and the spread areas of adhered cells as well as their relative dependence on filopodia formation using synthetic protein matrices with a proven ability to induce enhanced filopodia numbers in adherent cells. This study offers a basis for engineering exploitable cell–matrix contacts in situ at the nanoscale and single-cell levels

    Seroepidemiology of pandemic influenza A (H1N1) 2009 virus infections in Pune, India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In India, Pune was one of the badly affected cities during the influenza A (H1N1) 2009 pandemic. We undertook serosurveys among the risk groups and general population to determine the extent of pandemic influenza A (H1N1) 2009 virus infections.</p> <p>Methods</p> <p>Pre-pandemic sera from the archives, collected during January 2005 to March 2009, were assayed for the determination of baseline seropositivity. Serosurveys were undertaken among the risk groups such as hospital staff, general practitioners, school children and staff and general population between 15<sup>th </sup>August and 11<sup>th </sup>December 2009. In addition, the PCR-confirmed pandemic influenza A (H1N1) 2009 cases and their household contacts were also investigated. Haemagglutination-inhibition (HI) assays were performed using turkey red blood cells employing standard protocols. A titre of ≥1:40 was considered seropositive.</p> <p>Results</p> <p>Only 2 (0.9%) of the 222 pre-pandemic sera were positive. The test-retest reliability of HI assay in 101 sera was 98% for pandemic H1N1, 93.1% for seasonal H1N1 and 94% for seasonal H3N2. The sera from 48 (73.8%) of 65 PCR-confirmed pandemic H1N1 cases in 2009 were positive. Seropositivity among general practitioners increased from 4.9% in August to 9.4% in November and 15.1% in December. Among hospital staff, seropositivity increased from 2.8% in August to 12% in November. Seropositivity among the schools increased from 2% in August to 10.7% in September. The seropositivity among students (25%) was higher than the school staff in September. In a general population survey in October 2009, seropositivity was higher in children (9.1%) than adults (4.3%). The 15-19 years age group showed the highest seropositivity of 20.3%. Seropositivity of seasonal H3N2 (55.3%) and H1N1 (26.4%) was higher than pandemic H1N1 (5.7%) (n = 2328). In households of 74 PCR-confirmed pandemic H1N1 cases, 25.6% contacts were seropositive. Almost 90% pandemic H1N1 infections were asymptomatic or mild. Considering a titre cut off of 1:10, seropositivity was 1.5-3 times as compared to 1:40.</p> <p>Conclusions</p> <p>Pandemic influenza A (H1N1) 2009 virus infection was widespread in all sections of community. However, infection was significantly higher in school children and general practitioners. Hospital staff had the lowest infections suggesting the efficacy of infection-control measures.</p

    Fluorescent RNA cytosine analogue - an internal probe for detailed structure and dynamics investigations

    Get PDF
    The bright fluorescent cytosine analogue tCO stands out among fluorescent bases due to its virtually unquenched fluorescence emission in duplex DNA. However, like most reported base analogues, it has not been thoroughly characterized in RNA. We here report on the first synthesis and RNA-incorporation of tCO, and characterize its base-mimicking and fluorescence properties in RNA. As in DNA, we find a high quantum yield inside RNA duplexes (&lt;?F&gt; = 0.22) that is virtually unaffected by the neighbouring bases (?F = 0.20-0.25), resulting in an average brightness of 1900 M-1 cm-1. The average fluorescence lifetime in RNA duplexes is 4.3 ns and generally two lifetimes are required to fit the exponential decays. Fluorescence properties in ssRNA are defined by a small increase in average quantum yield (&lt;?F &gt; = 0.24) compared to dsRNA, with a broader distribution (?F = 0.17-0.34) and slightly shorter average lifetimes. Using circular dichroism, we find that the tCO-modified RNA duplexes form regular A-form helices and in UV-melting experiments the stability of the duplexes is only slightly higher than that of the corresponding natural RNA (&lt;?T m&gt; = + 2.3 °C). These properties make tCO a highly interesting fluorescent RNA base analogue for detailed FRET-based structural measurements, as a bright internal label in microscopy, and for fluorescence anisotropy measurements of RNA dynamics

    Rectal gel application of Withania somnifera root extract expounds anti-inflammatory and muco-restorative activity in TNBS-induced Inflammatory Bowel Disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory Bowel Disease (IBD) is marked with chronic inflammation of intestinal epithelium driven by oxidative stress. Traditional treatments with plant extracts gained renewed interest due to their ability to ameliorate the multi factorial conditions like inflammation. We investigated the beneficial effects of <it>Withania somnifera </it>in Trinitro Benzyl Sulfonic Acid (TNBS) induced experimental IBD through a rectally applicable formulation.</p> <p>Methods</p> <p>The study included (i) preparation of gel formulation from aqueous <it>Withania somnifera </it>root extract (WSRE), (ii) biochemical assays to determine its performance potential, (iii) testing of formulation efficacy in TNBS-induced IBD rat model, and (iv) histo-patholgical studies to assess its healing and muco-regenerative effect in IBD-induced rats. For this purpose, concentration dependant antioxidant activity of the extracts were evaluated using biochemical assays like (a) inhibition of lipid peroxidation, (b) NO scavenging, (c) H<sub>2</sub>O<sub>2 </sub>scavenging, and (d) ferric reducing power assay.</p> <p>Results</p> <p>The extract, at 500 μg/ml, the highest concentration tested, showed 95.6% inhibition of lipid peroxidation, 14.8% NO scavenging, 81.79% H<sub>2</sub>O<sub>2 </sub>scavenging and a reducing capacity of 0.80. The results were comparable with standard antioxidants, ascorbic acid and curcumin. WSRE treatment positively scored on histopathological parameters like necrosis, edema, neutrophil infiltration. The post treatment intestinal features showed restoration at par with the healthy intestine. In view of these results, gel formulation containing an aqueous extract of <it>W. somnifera</it>, prepared for rectal application was tested for its anti-inflammatory activity in TNBS-induced rat models for IBD. Commercially available anti-inflammatory drug Mesalamine was used as the standard in this assay.</p> <p>Conclusions</p> <p>Dose of the rectal gel applied at 1000 mg of WSRE per kg rat weight showed significant muco-restorative efficacy in the IBD-induced rats, validated by histo-pathological studies.</p

    Hydrodynamic Regulation of Monocyte Inflammatory Response to an Intracellular Pathogen

    Get PDF
    Systemic bacterial infections elicit inflammatory response that promotes acute or chronic complications such as sepsis, arthritis or atherosclerosis. Of interest, cells in circulation experience hydrodynamic shear forces, which have been shown to be a potent regulator of cellular function in the vasculature and play an important role in maintaining tissue homeostasis. In this study, we have examined the effect of shear forces due to blood flow in modulating the inflammatory response of cells to infection. Using an in vitro model, we analyzed the effects of physiological levels of shear stress on the inflammatory response of monocytes infected with chlamydia, an intracellular pathogen which causes bronchitis and is implicated in the development of atherosclerosis. We found that chlamydial infection alters the morphology of monocytes and trigger the release of pro-inflammatory cytokines TNF-α, IL-8, IL-1β and IL-6. We also found that the exposure of chlamydia-infected monocytes to short durations of arterial shear stress significantly enhances the secretion of cytokines in a time-dependent manner and the expression of surface adhesion molecule ICAM-1. As a functional consequence, infection and shear stress increased monocyte adhesion to endothelial cells under flow and in the activation and aggregation of platelets. Overall, our study demonstrates that shear stress enhances the inflammatory response of monocytes to infection, suggesting that mechanical forces may contribute to disease pathophysiology. These results provide a novel perspective on our understanding of systemic infection and inflammation

    Inhibiting α-Synuclein Oligomerization by Stable Cell-Penetrating β-Synuclein Fragments Recovers Phenotype of Parkinson's Disease Model Flies

    Get PDF
    The intracellular oligomerization of α-synuclein is associated with Parkinson's disease and appears to be an important target for disease-modifying treatment. Yet, to date, there is no specific inhibitor for this aggregation process. Using unbiased systematic peptide array analysis, we indentified molecular interaction domains within the β-synuclein polypeptide that specifically binds α-synuclein. Adding such peptide fragments to α-synuclein significantly reduced both amyloid fibrils and soluble oligomer formation in vitro. A retro-inverso analogue of the best peptide inhibitor was designed to develop the identified molecular recognition module into a drug candidate. While this peptide shows indistinguishable activity as compared to the native peptide, it is stable in mouse serum and penetrates α-synuclein over-expressing cells. The interaction interface between the D-amino acid peptide and α-synuclein was mapped by Nuclear Magnetic Resonance spectroscopy. Finally, administering the retro-inverso peptide to a Drosophila model expressing mutant A53T α-synuclein in the nervous system, resulted in a significant recovery of the behavioral abnormalities of the treated flies and in a significant reduction in α-synuclein accumulation in the brains of the flies. The engineered retro-inverso peptide can serve as a lead for developing a novel class of therapeutic agents to treat Parkinson's disease

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore