31 research outputs found

    Fat mass and obesity-related (FTO) shuttles between the nucleus and cytoplasm.

    Get PDF
    SNPs (single nucleotide polymorphisms) on a chromosome 16 locus encompassing FTO, as well as IRX3, 5, 6, FTM and FTL are robustly associated with human obesity. FTO catalyses the Fe(II)- and 2OG-dependent demethylation of RNA and is an AA (amino acid) sensor that couples AA levels to mTORC1 (mammalian target of rapamycin complex 1) signalling, thereby playing a key role in regulating growth and translation. However, the cellular compartment in which FTO primarily resides to perform its biochemical role is unclear. Here, we undertake live cell imaging of GFP (green fluorescent protein)-FTO, and demonstrate that FTO resides in both the nucleus and cytoplasm. We show using 'FLIP' (fluorescence loss in photobleaching) that a mobile FTO fraction shuttles between both compartments. We performed a proteomic study and identified XPO2 (Exportin 2), one of a family of proteins that mediates the shuttling of proteins between the nucleus and the cytoplasm, as a binding partner of FTO. Finally, using deletion studies, we show that the N-terminus of FTO is required for its ability to shuttle between the nucleus and cytoplasm. In conclusion, FTO is present in both the nucleus and cytoplasm, with a mobile fraction that shuttles between both cellular compartments, possibly by interaction with XPO2.This is the final published version. It first appeared at http://www.bioscirep.org/bsr/034/bsr034e144.htm

    FTO is necessary for the induction of leptin resistance by high-fat feeding.

    Get PDF
    OBJECTIVE: Loss of function FTO mutations significantly impact body composition in humans and mice, with Fto-deficient mice reported to resist the development of obesity in response to a high-fat diet (HFD). We aimed to further explore the interactions between FTO and HFD and determine if FTO can influence the adverse metabolic consequence of HFD. METHODS: We studied mice deficient in FTO in two well validated models of leptin resistance (HFD feeding and central palmitate injection) to determine how Fto genotype may influence the action of leptin. Using transcriptomic analysis of hypothalamic tissue to identify relevant pathways affected by the loss of Fto, we combined data from co-immunoprecipitation, yeast 2-hybrid and luciferase reporter assays to identify mechanisms through which FTO can influence the development of leptin resistant states. RESULTS: Mice deficient in Fto significantly increased their fat mass in response to HFD. Fto (+/-) and Fto (-/-) mice remained sensitive to the anorexigenic effects of leptin, both after exposure to a HFD or after acute central application of palmitate. Genes encoding components of the NFкB signalling pathway were down-regulated in the hypothalami of Fto-deficient mice following a HFD. When this pathway was reactivated in Fto-deficient mice with a single low central dose of TNFα, the mice became less sensitive to the effect of leptin. We identified a transcriptional coactivator of NFкB, TRIP4, as a binding partner of FTO and a molecule that is required for TRIP4 dependent transactivation of NFкB. CONCLUSIONS: Our study demonstrates that, independent of body weight, Fto influences the metabolic outcomes of a HFD through alteration of hypothalamic NFкB signalling. This supports the notion that pharmacological modulation of FTO activity might have the potential for therapeutic benefit in improving leptin sensitivity, in a manner that is influenced by the nutritional environment.The authors thank Roger Cox (MRC Harwell) for kindly providing us with the Fto-deficient mouse strain. This study was supported by the Medical Research Council (MRC) Metabolic Disease Unit (MRC_MC_UU_12012/1), EU FP7- FOOD- 266408 Full4Health and the Helmholtz Alliance ICEMED.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S2212877815000241#

    Comparative evaluation of equine mesenchymal stem cells derived from amniotic fluid and umbilical cord blood

    Get PDF
    Mesenchymal stem cells (MSCs) are promising therapeutic tools for the treatment of tendon rupture and other musculoskeletal injuries in horses. Although MSCs from bone marrow and adipose tissues are commonly used for therapeutic purpose in equines, umbilical cord blood (UCB) and amniotic fluid (AF) are potential non-invasive sources of MSCs. We collected AF and UCB from twenty mares during foaling for isolation of MSCs and evaluated them for the differences in isolation rates, proliferation capacity, expression of MSC markers and multi-lineage differentiation ability. The plastic adherent colonies were observed in 60% AF and 65% UCB samples. The mean doubling time for AF cells was significantly lower than that of UCB cells. The AF-MSCs proliferated till passage 36 whereas UCB-MSCs till passage 20 only. Both AF and UCB derived cells expressed CD29, CD44, CD73, CD90 and CD105 and were negative for haematopoietic and leukocytic markers (CD14, CD34 and CD45). The CD90 and CD73 expression was significantly higher in AF derived cells as compared to UCB-MSCs. On the other hand, CD29 expression was significantly lower in AF derived cells as compared to UCB derived cells. The UCB-MSCs differentiated poorly to adipogenic lineage compared to AF-MSCs. These results suggested that equine AF yields more MSCs with greater in vitro proliferation and differentiation capacities and is better non-invasive source of MSCs for regenerative therapies in equines

    Intestinal Interleukin-17 Receptor Signaling Mediates Reciprocal Control of the Gut Microbiota and Autoimmune Inflammation

    Get PDF
    Interleukin-17 (IL-17) and IL-17 receptor (IL-17R) signaling are essential for regulating mucosal host defense against many invading pathogens. Commensal bacteria, especially segmented filamentous bacteria (SFB), are a crucial factor that drives T helper 17 (Th17) cell development in the gastrointestinal tract. In this study, we demonstrate that Th17 cells controlled SFB burden. Disruption of IL-17R signaling in the enteric epithelium resulted in SFB dysbiosis due to reduced expression of α-defensins, Pigr and Nox1. When subjected to experimental autoimmune encephalomyelitis, IL-17R signaling deficient mice demonstrated earlier disease onset and worsened severity that was associated with increased intestinal Csf2 expression and elevated systemic GM-CSF cytokine concentrations. Conditional deletion of IL-17R in the enteric epithelium demonstrated that there was a reciprocal relationship between the gut microbiota and enteric IL-17R signaling that controlled dysbiosis, constrained Th17 development, and regulated the susceptibility to autoimmune inflammation

    Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance.

    Get PDF
    Insulin resistance is a key mediator of obesity-related cardiometabolic disease, yet the mechanisms underlying this link remain obscure. Using an integrative genomic approach, we identify 53 genomic regions associated with insulin resistance phenotypes (higher fasting insulin levels adjusted for BMI, lower HDL cholesterol levels and higher triglyceride levels) and provide evidence that their link with higher cardiometabolic risk is underpinned by an association with lower adipose mass in peripheral compartments. Using these 53 loci, we show a polygenic contribution to familial partial lipodystrophy type 1, a severe form of insulin resistance, and highlight shared molecular mechanisms in common/mild and rare/severe insulin resistance. Population-level genetic analyses combined with experiments in cellular models implicate CCDC92, DNAH10 and L3MBTL3 as previously unrecognized molecules influencing adipocyte differentiation. Our findings support the notion that limited storage capacity of peripheral adipose tissue is an important etiological component in insulin-resistant cardiometabolic disease and highlight genes and mechanisms underpinning this link.This study was funded by the UK Medical Research Council through grants MC_UU_12015/1, MC_PC_13046, MC_PC_13048 and MR/L00002/1. This work was supported by the MRC Metabolic Diseases Unit (MC_UU_12012/5) and the Cambridge NIHR Biomedical Research Centre and EU/EFPIA Innovative Medicines Initiative Joint Undertaking (EMIF grant 115372). Funding for the InterAct project was provided by the EU FP6 program (grant LSHM_CT_2006_037197). This work was funded, in part, through an EFSD Rising Star award to R.A.S. supported by Novo Nordisk. D.B.S. is supported by Wellcome Trust grant 107064. M.I.M. is a Wellcome Trust Senior Investigator and is supported by the following grants from the Wellcome Trust: 090532 and 098381. M.v.d.B. is supported by a Novo Nordisk postdoctoral fellowship run in partnership with the University of Oxford. I.B. is supported by Wellcome Trust grant WT098051. S.O'R. acknowledges funding from the Wellcome Trust (Wellcome Trust Senior Investigator Award 095515/Z/11/Z and Wellcome Trust Strategic Award 100574/Z/12/Z)

    Performance Evaluation of a Novel iTongue for Indian Black Tea Discrimination

    No full text
    In this work, the multi-electrode-single-frequency (MESF), multi-frequency-single-electrode (MFSE), and multi-frequency- multi-electrode (MFME) impedance responses of an impedance-Tongue reported previously, are evaluated for their discriminability of Indian Black Teas. Principal component analysis (PCA) in conjunction with a cluster validity measure, Davis–Bouldin Index (DBI), has been used for discriminability evaluation. The discriminabilities of electrode specific frequency segments chosen by optimization algorithms, namely, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have also been evaluated. The results show that the MFSE impedance response of Gold electrode gives the best discriminability without compromising the system complexity as against MESF, MFSE, MFME, and GA/PSO-optimized response. The results also suggest that the cross-sensitivity of electrodes may be enhanced by selecting optimum frequencies and/or electrodes, paralleling the practice of modifying the electrodes. This opens up a new approach towards qualitative and quantitative analysis of complex liquids
    corecore