653 research outputs found

    Strong rescattering in K-> 3pi decays and low-energy meson dynamics

    Full text link
    We present a consistent analysis of final state interactions in K→3π{K\rightarrow 3\pi} decays in the framework of Chiral Perturbation Theory. The result is that the kinematical dependence of the rescattering phases cannot be neglected. The possibility of extracting the phase shifts from future KS−KLK_S-K_L interference experiments is also analyzed.Comment: 14 pages in RevTex, 3 figures in postscrip

    Kaon decay interferometry as meson dynamics probes

    Full text link
    We discuss the time dependent interferences between KLK_L and KSK_S in the decays in 3π3\pi and Ï€Ï€Îł\pi\pi\gamma, to be studied at interferometry machines such as the ϕ\phi-factory and LEAR. We emphasize the possibilities and the advantages of using interferences, in comparison with width measurements, to obtain information both on CPCP conserving and CPCP violating amplitudes. Comparison with present data and suggestions for future experiments are made.Comment: 15 pages, in RevTex, Report INFNNA-IV-93-31, UTS-DFT-93-2

    Binary systems of neutral mesons in Quantum Field Theory

    Full text link
    Quasi-degenerate binary systems of neutral mesons of the kaon type are investigated in Quantum Field Theory (QFT). General constraints cast by analyticity and discrete symmetries P, C, CP, TCP on the propagator (and on its spectral function) are deduced. Its poles are the physical masses; this unambiguously defines the propagating eigenstates. It is diagonalized and its spectrum thoroughly investigated. The role of ``spurious'' states, of zero norm at the poles, is emphasized, in particular for unitarity and for the realization of TCP symmetry. The K_L-K_S mass splitting triggers a tiny difference between their CP violating parameters \epsilon_L and \epsilon_S, without any violation of TCP. A constant mass matrix like used in Quantum Mechanics (QM) can only be introduced in a linear approximation to the inverse propagator, which respects its analyticity and positivity properties; it is however unable to faithfully describe all features of neutral mesons as we determine them in QFT, nor to provide any sensible parameterization of eventual effects of TCP violation. The suitable way to diagonalize the propagator makes use of a bi-orthogonal basis; it is inequivalent to a bi-unitary transformation (unless the propagator is normal, which cannot occur here). Problems linked with the existence of different ``in'' and ``out'' eigenstates are smoothed out. We study phenomenological consequences of the differences between the QFT and QM treatments. The non-vanishing of semi-leptonic asymmetry \delta_S - \delta_L does not signal, unlike usually claimed, TCP violation, while A_TCP keeps vanishing when TCP is realized. We provide expressions invariant by the rephasing of K0 and K0bar.Comment: 44 pages, 2 figures. Version to appear in Int. J. Mod. Phys.

    Feasibility Study of a Neutron Time Of Flight Facility at the CERN-PS

    Get PDF
    This report summarises the feasibility study of a neutron time-of-flight facility at the CERN-PS as described in Refs. [1] and [2]. The idea is to extract at 24 GeV/cproton bunches (r.m.s. length ~7 ns) on to a target. The neutrons produced by spallation are directed to an experimental area located 230 m downstream throughout a vacuum pipe (diameter ~80 cm) making use of the existing TT2A tunnel about 7 m below the ISR tunne

    Tests of the Equivalence Principle with Neutral Kaons

    Get PDF
    We test the Principle of Equivalence for particles and antiparticles, using CPLEAR data on tagged K0 and K0bar decays into pi^+ pi^-. For the first time, we search for possible annual, monthly and diurnal modulations of the observables |eta_{+-}| and phi_{+-}, that could be correlated with variations in astrophysical potentials. Within the accuracy of CPLEAR, the measured values of |eta_{+-}| and phi_{+-} are found not to be correlated with changes of the gravitational potential. We analyze data assuming effective scalar, vector and tensor interactions, and we conclude that the Principle of Equivalence between particles and antiparticles holds to a level of 6.5, 4.3 and 1.8 x 10^{-9}, respectively, for scalar, vector and tensor potentials originating from the Sun with a range much greater than the distance Earth-Sun. We also study energy-dependent effects that might arise from vector or tensor interactions. Finally, we compile upper limits on the gravitational coupling difference between K0 and K0bar as a function of the scalar, vector and tensor interaction range.Comment: 15 pages latex 2e, five figures, one style file (cernart.csl) incorporate

    Lorentz breaking Effective Field Theory and observational tests

    Full text link
    Analogue models of gravity have provided an experimentally realizable test field for our ideas on quantum field theory in curved spacetimes but they have also inspired the investigation of possible departures from exact Lorentz invariance at microscopic scales. In this role they have joined, and sometime anticipated, several quantum gravity models characterized by Lorentz breaking phenomenology. A crucial difference between these speculations and other ones associated to quantum gravity scenarios, is the possibility to carry out observational and experimental tests which have nowadays led to a broad range of constraints on departures from Lorentz invariance. We shall review here the effective field theory approach to Lorentz breaking in the matter sector, present the constraints provided by the available observations and finally discuss the implications of the persisting uncertainty on the composition of the ultra high energy cosmic rays for the constraints on the higher order, analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references adde

    Morphological evidence for an invasion-independent metastasis pathway exists in multiple human cancers

    Get PDF
    BACKGROUND: We have previously described an alternative invasion-independent pathway of cancer metastasis in a murine mammary tumor model. This pathway is initiated by intravasation of tumor nests enveloped by endothelial cells of sinusoidal vasculature within the tumor. In this study, we examined whether evidence for the invasion-independent pathway of metastasis is present in human cancers. METHODS: Archival specimens of 10 common types of human cancers were examined for the presence of sinusoidal vasculature enveloping tumor nests and subsequently generated endothelial-covered tumor emboli in efferent veins. RESULTS: A percentage of tumor emboli in all cancers was found to be enveloped by endothelial cells, but these structures were particularly prevalent in renal cell carcinomas, hepatocellular carcinomas and follicular thyroid carcinomas. A common feature of the vasculature in these tumors was the presence of dilated sinusoid-like structures surrounding tumor nests. A high mean vascular area within tumors, an indication of sinusoidal vascular development, was significantly related to the presence of endothelial-covered tumor emboli. CONCLUSIONS: These results suggest that an invasion-independent metastatic pathway is possible in a wide variety of human cancers. Further investigation of this phenomenon may present new therapeutic strategies for the amelioration of cancer metastasis

    Lorentz violation and Crab synchrotron emission: a new constraint far beyond the Planck scale

    Get PDF
    Special relativity asserts that physical phenomena appear the same for all inertially moving observers. This symmetry, called Lorentz symmetry, relates long wavelengths to short ones: if the symmetry is exact it implies that spacetime must look the same at all length scales. Several approaches to quantum gravity, however, suggest that there may be a Lorentz violating microscopic structure of spacetime, for example discreteness, non-commutativity, or extra dimensions. Here we determine a very strong constraint on a type of Lorentz violation that produces a maximum electron speed less than the speed of light. We use the observation of 100 MeV synchrotron radiation from the Crab nebula to improve the previous limits by a factor of 40 million, ruling out this type of Lorentz violation, and thereby providing an important constraint on theories of quantum gravity.Comment: 12 pages. Presentation shortened and revised for letter to Nature. New title "A strong astrophysical constraint on the violation of special relativity by quantum gravity". Maximum observed synchrotron frequency lowered, resulting in weakening the constraint from E_QG>4.5*10^27 GeV to E_QG>10^26 GeV. The role of the effective field theory assumptions underlying the analysis is highlighte
    • 

    corecore